35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010 | class SDFPipeline:
"""SDF pose and shape estimation pipeline."""
def __init__(self, config: dict) -> None:
"""Load and initialize the pipeline.
Args:
config: Configuration dictionary.
"""
# improve runtime for conv3d backward
# https://github.com/pytorch/pytorch/issues/32370
torch.backends.cudnn.enabled = False
self._parse_config(config)
self.init_network = SDFPoseNet(
INIT_MODULE_DICT[self.init_config["backbone_type"]](
**self.init_config["backbone"]
),
INIT_MODULE_DICT[self.init_config["head_type"]](
shape_dimension=self.vae_config["latent_size"],
**self.init_config["head"],
),
).to(self.device)
load_model_weights(
self.init_config["model"],
self.init_network,
self.device,
self.init_config.get("model_url"),
)
self.init_network.eval()
self.resolution = 64
self.vae = SDFVAE(
sdf_size=64,
latent_size=self.vae_config["latent_size"],
encoder_dict=self.vae_config["encoder"],
decoder_dict=self.vae_config["decoder"],
device=self.device,
).to(self.device)
load_model_weights(
self.vae_config["model"],
self.vae,
self.device,
self.vae_config.get("model_url"),
)
self.vae.eval()
self.cam = Camera(**self.camera_config)
self.render = lambda sdf, pos, quat, i_s: render_depth_gpu(
sdf, pos, quat, i_s, None, None, None, config["threshold"], self.cam
)
self.config = config
self.log_data = []
def _parse_config(self, config: dict) -> None:
"""Parse config dict.
This function makes sure that all required keys are available.
"""
self.device = config["device"]
self.init_config = config["init"]
self.vae_config = config["vae"] if "vae" in config else self.init_config["vae"]
self.camera_config = config["camera"]
self.result_selection_strategy = config.get(
"result_selection_strategy", "last_iteration"
) # last_iteration | best_inlier_ratio
self._relative_inlier_threshold = config.get(
"relative_inlier_threshold", 0.03
) # relative depth error threshold for pixel to be considered inlier
if "far_field" in config:
self._far_field = config["far_field"] if "far_field" in config else None
self.config = config
@staticmethod
def _compute_gradients(loss: torch.Tensor) -> None:
loss.backward()
def _compute_view_losses(
self,
depth_input: torch.Tensor,
depth_estimate: torch.Tensor,
position: torch.Tensor,
orientation: torch.Tensor,
scale: torch.Tensor,
sdf: torch.Tensor,
) -> Tuple[torch.Tensor]:
# depth l1
overlap_mask = (depth_input > 0) & (depth_estimate > 0)
depth_error = torch.abs(depth_estimate - depth_input)
# max_depth_error = 0.05
# depth_outlier_mask = depth_error > max_depth_error
# depth_mask = overlap_mask & ~depth_outlier_mask
# depth_error[~overlap_mask] = 0
loss_depth = torch.mean(depth_error[overlap_mask])
# pointcloud l1
pointcloud_obs = pointset_utils.depth_to_pointcloud(
depth_input, self.cam, normalize=False
)
pointcloud_error = losses.pc_loss(
pointcloud_obs,
position,
orientation,
scale,
sdf,
)
loss_pc = torch.mean(torch.abs(pointcloud_error))
# nearest neighbor l1
# pointcloud_outliers = pointset_utils.depth_to_pointcloud(
# depth_estimate, self.cam, normalize=False, mask=depth_outlier_mask
# )
loss_nn = 0
# if pointcloud_outliers.shape[0] != 0:
# pass
# loss_nn += 0
# # TODO different gradients for point cloud (not derived by renderer)
# outlier_nn_d = losses.nn_loss(pointcloud_outliers, pointcloud_obs)
# # only use positive, because sqrt is not differentiable at 0
# outlier_nn_d = outlier_nn_d[outlier_nn_d > 0]
# loss_nn = loss_nn + torch.mean(torch.sqrt(outlier_nn_d))
return loss_depth, loss_pc, loss_nn
def _compute_point_constraint_loss(self, orientation: torch.Tensor) -> torch.Tensor:
"""Compute loss for point constraint if specified."""
if self._point_constraint is not None:
loss_point_constraint = losses.point_constraint_loss(
orientation_q=orientation[0],
source=self._point_constraint[0],
target=self._point_constraint[1],
)
weight = self._point_constraint[2]
return weight * loss_point_constraint
else:
return orientation.new_tensor(0.0)
def _compute_inlier_ratio(
self,
depth_input: torch.Tensor,
depth_estimate: torch.Tensor,
) -> None:
"""Compute ratio of pixels with small relative depth error."""
rel_depth_error = torch.abs(depth_input - depth_estimate) / depth_input
inlier_mask = rel_depth_error < self._relative_inlier_threshold
inliers = torch.count_nonzero(inlier_mask)
valid_depth_pixels = torch.count_nonzero(depth_input)
inlier_ratio = inliers / valid_depth_pixels
return inlier_ratio
def _update_best_estimate(
self,
depth_input: torch.Tensor,
depth_estimate: torch.Tensor,
position: torch.Tensor,
orientation: torch.Tensor,
scale: torch.Tensor,
latent_shape: torch.Tensor,
) -> None:
"""Update the best current estimate by keeping track of inlier ratio.
Returns:
Inlier ratio of this configuration.
"""
inlier_ratio = self._compute_inlier_ratio(depth_input, depth_estimate)
if self._best_inlier_ratio is None or inlier_ratio > self._best_inlier_ratio:
self._best_inlier_ratio = inlier_ratio
self._best_position = position
self._best_orientation = orientation
self._best_scale = scale
self._best_latent_shape = latent_shape
return inlier_ratio
def __call__(
self,
depth_images: torch.Tensor,
masks: torch.Tensor,
color_images: torch.Tensor,
visualize: bool = False,
camera_positions: Optional[torch.Tensor] = None,
camera_orientations: Optional[torch.Tensor] = None,
log_path: Optional[str] = None,
shape_optimization: bool = True,
animation_path: Optional[str] = None,
point_constraint: Optional[Tuple[torch.Tensor]] = None,
prior_orientation_distribution: Optional[torch.Tensor] = None,
training_orientation_distribution: Optional[torch.Tensor] = None,
) -> tuple:
"""Infer pose, size and latent representation from depth and mask.
If multiple images are passed the cameras are assumed to be fixed.
All tensors should be on the same device as the pipeline.
Batch dimension N must be provided either for all or none of the arguments.
Args:
depth_images:
The depth map containing the distance along the camera's z-axis.
Does not have to be masked, necessary preprocessing is done by pipeline.
Will be masked and preprocessed in-place (pass copy if full depth is
used afterwards).
Shape (N, H, W) or (H, W) for a single depth image.
masks:
binary mask of the object to estimate, same shape as depth_images
color_images:
the color image (currently only used in visualization),
shape (N, H, W, 3) or (H, W, 3), RGB, float, 0-1.
visualize: Whether to visualize the intermediate steps and final result.
camera_positions:
position of camera in world coordinates for each image,
if None, (0,0,0) will be assumed for all images,
shape (N, 3) or (3,)
camera_orientations:
orientation of camera in world-frame as normalized quaternion,
quaternion is in scalar-last convention,
note, that this is the quaternion that transforms a point from camera
to world-frame
if None, (0,0,0,1) will be assumed for all images,
shape (N, 4) or (4,)
log_path:
file path to write timestamps and intermediate steps to,
no logging is performed if None
shape_optimization:
enable or disable shape optimization during iterative optimization
animation_path:
file path to write rendering and error visualizations to
point_constraint:
tuple of source point and rotated target point and weight
a loss will be added that penalizes
weight * || rotation @ source - target ||_2
prior_orientation_distribution:
Prior distribution of orientations used for initialization.
If None, distribution of initialization network will not be modified.
Only supported for initialization network with discretized orientation
representation.
Output distribution of initialization network will be adjusted by
multiplying with
prior_orientation_distribution / training_orientation_distribution
and renormalizing.
Tensor of shape (N,C,) or (C,) for single image.
C being the number of grid cells in the SO3Grid used by the
initialization network.
training_orientation_distribution:
Distribution of orientations used for training initialization network.
If None, equal probability for each cell will be assumed.
Note this is only approximately the same as a uniform distribution.
Only used if prior_orientation_distribution is provided.
Tensor of shape (C,). C being the number of grid cells in the SO3Grid
used by the initialization network. N not supported, since same
training network (and hence distribution) is used independent of view.
Returns:
- 3D pose of SDF center in world frame, shape (1,3,)
- Orientation as normalized quaternion, scalar-last convention, shape (1,4,)
- Size of SDF as length of half-width, shape (1,)
- Latent shape representation of the object, shape (1,latent_size,).
"""
# initialize optimization
self._best_inlier_ratio = None
self._point_constraint = point_constraint
if animation_path is not None:
self._create_animation_folders(animation_path)
start_time = time.time() # for logging
# Add batch dimension if necessary
if depth_images.dim() == 2:
depth_images = depth_images.unsqueeze(0)
masks = masks.unsqueeze(0)
color_images = color_images.unsqueeze(0)
if camera_positions is not None:
camera_positions = camera_positions.unsqueeze(0)
if camera_orientations is not None:
camera_orientations = camera_orientations.unsqueeze(0)
if prior_orientation_distribution is not None:
prior_orientation_distribution = (
prior_orientation_distribution.unsqueeze(0)
)
# TODO assert all tensors have expected dimension
if animation_path is not None:
self._save_inputs(animation_path, depth_images, color_images, masks)
n_imgs = depth_images.shape[0]
if camera_positions is None:
camera_positions = torch.zeros(n_imgs, 3, device=self.device)
if camera_orientations is None:
camera_orientations = torch.zeros(n_imgs, 4, device=self.device)
camera_orientations[:, 3] = 1.0
with torch.no_grad():
self._preprocess_depth(depth_images, masks)
# store pointcloud without reconstruction
if log_path is not None:
torch.cuda.synchronize()
self._log_data(
{
"timestamp": time.time() - start_time,
"depth_images": depth_images,
"color_images": color_images,
"masks": masks,
"color_images": color_images,
"camera_positions": camera_positions,
"camera_orientations": camera_orientations,
},
)
# Initialization
with torch.no_grad():
latent_shape, position, scale, orientation = self._nn_init(
depth_images,
camera_positions,
camera_orientations,
prior_orientation_distribution,
training_orientation_distribution,
)
if log_path is not None:
torch.cuda.synchronize()
self._log_data(
{
"timestamp": time.time() - start_time,
"camera_positions": camera_positions,
"camera_orientations": camera_orientations,
"latent_shape": latent_shape,
"position": position,
"scale_inv": 1 / scale,
"orientation": orientation,
},
)
if animation_path is not None:
self._save_preprocessed_inputs(animation_path, depth_images)
# Iterative optimization
self._current_iteration = 1
position.requires_grad_()
scale.requires_grad_()
orientation.requires_grad_()
latent_shape.requires_grad_()
if visualize:
fig_vis, axes = plt.subplots(
2, 3, sharex=True, sharey=True, figsize=(12, 8)
)
fig_loss, (loss_ax, inlier_ax) = plt.subplots(1, 2)
vmin, vmax = None, None
depth_losses = []
pointcloud_losses = []
nn_losses = []
point_constraint_losses = []
inlier_ratios = []
total_losses = []
opt_vars = [
{"params": position, "lr": 1e-3},
{"params": orientation, "lr": 1e-2},
{"params": scale, "lr": 1e-3},
{"params": latent_shape, "lr": 1e-2},
]
optimizer = torch.optim.Adam(opt_vars)
while self._current_iteration <= self.config["max_iterations"]:
optimizer.zero_grad()
norm_orientation = orientation / torch.sqrt(torch.sum(orientation**2))
with torch.set_grad_enabled(shape_optimization):
sdf = self.vae.decode(latent_shape)
loss_depth = torch.tensor(0.0, device=self.device, requires_grad=True)
loss_pc = torch.tensor(0.0, device=self.device, requires_grad=True)
loss_nn = torch.tensor(0.0, device=self.device, requires_grad=True)
for depth_image, camera_position, camera_orientation in zip(
depth_images, camera_positions, camera_orientations
):
# transform object to camera frame
q_w2c = quaternion_utils.quaternion_invert(camera_orientation)
position_c = quaternion_utils.quaternion_apply(
q_w2c, position - camera_position
)
orientation_c = quaternion_utils.quaternion_multiply(
q_w2c, norm_orientation
)
depth_estimate = self.render(
sdf[0, 0], position_c[0], orientation_c[0], 1 / scale[0]
)
view_loss_depth, view_loss_pc, view_loss_nn = self._compute_view_losses(
depth_image,
depth_estimate,
position_c[0],
orientation_c[0],
scale[0],
sdf[0, 0],
)
loss_depth = loss_depth + view_loss_depth
loss_pc = loss_pc + view_loss_pc
loss_nn = loss_nn + view_loss_nn
loss_point_constraint = self._compute_point_constraint_loss(orientation)
loss = (
self.config["depth_weight"] * loss_depth
+ self.config["pc_weight"] * loss_pc
+ self.config["nn_weight"] * loss_nn
+ loss_point_constraint
)
self._compute_gradients(loss)
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
orientation /= torch.sqrt(torch.sum(orientation**2))
inlier_ratio = self._update_best_estimate(
depth_image,
depth_estimate,
position,
orientation,
scale,
latent_shape,
)
if visualize:
depth_losses.append(loss_depth.item())
pointcloud_losses.append(loss_pc.item())
nn_losses.append(loss_nn.item())
point_constraint_losses.append(loss_point_constraint.item())
inlier_ratios.append(inlier_ratio.item())
total_losses.append(loss.item())
if log_path is not None:
torch.cuda.synchronize()
self._log_data(
{
"timestamp": time.time() - start_time,
"latent_shape": latent_shape,
"position": position,
"scale_inv": 1 / scale,
"orientation": orientation,
},
)
with torch.no_grad():
if animation_path is not None:
self._save_current_state(
depth_images,
animation_path,
camera_positions,
camera_orientations,
position,
orientation,
1 / scale,
sdf,
)
if visualize and (
self._current_iteration % 10 == 1
or self._current_iteration == self.config["max_iterations"]
):
q_w2c = quaternion_utils.quaternion_invert(camera_orientations[0])
position_c = quaternion_utils.quaternion_apply(
q_w2c, position - camera_positions[0]
)
orientation_c = quaternion_utils.quaternion_multiply(
q_w2c, orientation
)
current_depth = self.render(
sdf[0, 0], position_c, orientation_c, 1 / scale
)
depth_image = depth_images[0]
color_image = color_images[0]
if self._current_iteration == 1:
vmin = depth_image[depth_image != 0].min() * 0.9
vmax = depth_image[depth_image != 0].max()
# show input image
axes[0, 0].clear()
axes[0, 0].imshow(depth_image.cpu(), vmin=vmin, vmax=vmax)
axes[0, 1].imshow(color_image.cpu())
# show initial estimate
axes[1, 0].clear()
axes[1, 0].imshow(
current_depth.detach().cpu(), vmin=vmin, vmax=vmax
)
axes[1, 0].set_title(f"loss {loss.item()}")
# update iterative estimate
# axes[0, 2].clear()
# axes[0, 2].imshow(rendered_error.detach().cpu())
# axes[0, 2].set_title("depth_loss")
# axes[1, 2].clear()
# axes[1, 2].imshow(error_pc.detach().cpu())
# axes[1, 2].set_title("pointcloud_loss")
loss_ax.clear()
loss_ax.plot(depth_losses, label="Depth")
loss_ax.plot(pointcloud_losses, label="Pointcloud")
loss_ax.plot(nn_losses, label="Nearest Neighbor")
if self._point_constraint is not None:
loss_ax.plot(point_constraint_losses, label="Point constraint")
loss_ax.plot(total_losses, label="Total")
loss_ax.set_yscale("log")
loss_ax.legend()
inlier_ax.clear()
inlier_ax.plot(inlier_ratios, label="Inlier Ratio")
inlier_ax.legend()
axes[1, 1].clear()
axes[1, 1].imshow(
current_depth.detach().cpu(), vmin=vmin, vmax=vmax
)
axes[1, 1].set_title(f"loss {loss.item()}")
fig_loss.canvas.draw()
fig_vis.canvas.draw()
plt.pause(0.1)
self._current_iteration += 1
if visualize:
plt.show()
plt.close(fig_loss)
plt.close(fig_vis)
if log_path is not None:
self._write_log_data(log_path)
if animation_path is not None:
self._create_animations(animation_path)
if self.result_selection_strategy == "last_iteration":
return position, orientation, scale, latent_shape
elif self.result_selection_strategy == "best_inlier_ratio":
return (
self._best_position,
self._best_orientation,
self._best_scale,
self._best_latent_shape,
)
else:
raise ValueError(
f"Result selection strategy {self.result_selection_strategy} is not"
"supported."
)
def _log_data(self, data: dict) -> None:
"""Add dictionary with associated timestamp to log data list."""
new_log_data = copy.deepcopy(data)
self.log_data.append(new_log_data)
def _write_log_data(self, file_path: str) -> None:
"""Write current list of log data to file."""
with open(file_path, "wb") as f:
pickle.dump({"config": self.config, "log": self.log_data}, f)
self.log_data = [] # reset log
def generate_depth(
self,
position: torch.Tensor,
orientation: torch.Tensor,
scale: torch.Tensor,
latent: torch.Tensor,
) -> torch.Tensor:
"""Generate depth image representing positioned object."""
sdf = self.vae.decode(latent)
depth = self.render(sdf[0, 0], position, orientation, 1 / scale)
return depth
def generate_mesh(
self, latent: torch.tensor, scale: torch.tensor, complete_mesh: bool = False
) -> synthetic.Mesh:
"""Generate mesh without pose.
Currently only supports batch size 1.
Args:
latent: Latent shape descriptor, shape (1,L).
scale:
Relative scale of the signed distance field, (i.e., half-width),
shape (1,).
complete_mesh:
If True, the SDF will be padded with positive values prior to converting
it to a mesh. This ensures a watertight mesh is created.
Returns:
Generate mesh by decoding latent shape descriptor and scaling it.
"""
with torch.no_grad():
sdf = self.vae.decode(latent)
if complete_mesh:
inc = 2
sdf = torch.nn.functional.pad(sdf, (1, 1, 1, 1, 1, 1), value=1.0)
else:
inc = 0
try:
sdf = sdf.cpu().numpy()
s = 2.0 / (self.resolution - 1)
vertices, faces, _, _ = marching_cubes(
sdf[0, 0],
spacing=(
s,
s,
s,
),
level=self.config["iso_threshold"],
)
c = s * (self.resolution + inc - 1) / 2.0 # move origin to center
vertices -= np.array([[c, c, c]])
mesh = o3d.geometry.TriangleMesh(
vertices=o3d.utility.Vector3dVector(vertices),
triangles=o3d.utility.Vector3iVector(faces),
)
except KeyError:
return None
return synthetic.Mesh(mesh=mesh, scale=scale.item(), rel_scale=True)
def _preprocess_depth(
self, depth_images: torch.Tensor, masks: torch.Tensor
) -> None:
"""Preprocesses depth image based on segmentation mask.
Args:
depth_images:
the depth images to preprocess, will be modified in place,
shape (N, H, W)
masks: the masks used for preprocessing, same shape as depth_images
"""
# shrink mask
# masks = (
# -torch.nn.functional.max_pool2d(
# -masks.double(), kernel_size=9, stride=1, padding=4
# )
# ).bool()
depth_images[~masks] = 0 # set outside of depth to 0
# remove data far away (should be based on what distances ocurred in training)
if self._far_field is not None:
depth_images[depth_images > self._far_field] = 0
# only consider available depth values for outlier detection
# masks = torch.logical_and(masks, depth_images != 0)
# depth_images =
# remove outliers based on median
# plt.imshow(depth_images[0].cpu().numpy())
# plt.show()
# for mask, depth_image in zip(masks, depth_images):
# median = torch.median(depth_image[mask])
# errors = torch.abs(depth_image[mask] - median)
# bins = 100
# hist = torch.histc(errors, bins=bins)
# print(hist)
# zero_indices = torch.nonzero(hist == 0)
# if len(zero_indices):
# threshold = zero_indices[0] / bins * errors.max()
# print(threshold)
# depth_image[torch.abs(depth_image - median) > threshold] = 0
# plt.imshow(depth_images[0].cpu().numpy())
# plt.show()
def _nn_init(
self,
depth_images: torch.Tensor,
camera_positions: torch.Tensor,
camera_orientations: torch.Tensor,
prior_orientation_distribution: Optional[torch.Tensor] = None,
training_orientation_distribution: Optional[torch.Tensor] = None,
) -> Tuple:
"""Estimate shape, pose, scale and orientation using initialization network.
Args:
depth_images: the preprocessed depth images, shape (N, H, W)
camera_positions:
position of camera in world coordinates for each image, shape (N, 3)
camera_orientations:
orientation of camera in world-frame as normalized quaternion,
quaternion is in scalar-last convention, shape (N, 4)
prior_orientation_distribution:
Prior distribution of orientations used for initialization.
If None, distribution of initialization network will not be modified.
Only supported for initialization network with discretized orientation
representation.
Output distribution of initialization network will be adjusted by
multiplying with
prior_orientation_distribution / training_orientation_distribution
and renormalizing.
Tensor of shape (N,C,). C being the number of grid cells in the SO3Grid
used by the initialization network.
training_orientation_distribution:
Distribution of orientations used for training initialization network.
If None, equal probability for each cell will be assumed.
Note this is only approximately the same as a uniform distribution.
Only used if prior_orientation_distribution is provided.
Tensor of shape (C,). C being the number of grid cells in the SO3Grid
used by the initialization network.
Returns:
Tuple comprised of:
- Latent shape representation of the object, shape (1, latent_size)
- 3D pose of SDF center in camera frame, shape (1, 3)
- Size of SDF as length of half-width, (1,)
- Orientation of SDF as normalized quaternion (1,4)
"""
if (
prior_orientation_distribution is not None
and self.init_config["head"]["orientation_repr"] != "discretized"
):
raise ValueError(
"prior_orientation_distribution only supported for discretized "
"orientation representation."
)
best = 0
best_result = None
for i, (depth_image, camera_orientation, camera_position) in enumerate(
zip(depth_images, camera_orientations, camera_positions)
):
centroid = None
if self.init_config["backbone_type"] == "VanillaPointNet":
inp = pointset_utils.depth_to_pointcloud(
depth_image, self.cam, normalize=False
)
if len(inp) == 0:
raise NoDepthError
if self.init_config["normalize_pose"]:
inp, centroid = pointset_utils.normalize_points(inp)
else:
inp = depth_image
inp = inp.unsqueeze(0)
latent_shape, position, scale, orientation_repr = self.init_network(inp)
if self.config["mean_shape"]:
latent_shape = latent_shape.new_zeros(latent_shape.shape)
if centroid is not None:
position += centroid
if self.init_config["head"]["orientation_repr"] == "discretized":
posterior_orientation_dist = torch.softmax(orientation_repr, -1)
if prior_orientation_distribution is not None:
posterior_orientation_dist = self._adjust_categorical_posterior(
posterior=posterior_orientation_dist,
prior=prior_orientation_distribution[i],
train_prior=training_orientation_distribution,
)
orientation_camera = torch.tensor(
self.init_network._head._grid.index_to_quat(
posterior_orientation_dist.argmax().item()
),
dtype=torch.float,
device=self.device,
).unsqueeze(0)
elif self.init_config["head"]["orientation_repr"] == "quaternion":
orientation_camera = orientation_repr
else:
raise NotImplementedError("Orientation representation is not supported")
# output are in camera frame, transform to world frame
position_world = (
quaternion_utils.quaternion_apply(camera_orientation, position)
+ camera_position
)
orientation_world = quaternion_utils.quaternion_multiply(
camera_orientation, orientation_camera
)
if self.config["init_view"] == "first":
return latent_shape, position_world, scale, orientation_world
elif self.config["init_view"] == "best":
if self.init_config["head"]["orientation_repr"] != "discretized":
raise NotImplementedError(
'"best" init strategy only supported with discretized '
"orientation representation"
)
maximum = posterior_orientation_dist.max()
if maximum > best:
best = maximum
best_result = latent_shape, position_world, scale, orientation_world
else:
raise NotImplementedError(
'Only "first" and "best" strategies are currently supported'
)
return best_result
def _generate_uniform_quaternion(self) -> torch.tensor:
"""Generate a uniform quaternion.
Following the method from K. Shoemake, Uniform Random Rotations, 1992.
See: http://planning.cs.uiuc.edu/node198.html
Returns:
Uniformly distributed unit quaternion on the estimator's device.
"""
u1, u2, u3 = random.random(), random.random(), random.random()
return (
torch.tensor(
[
math.sqrt(1 - u1) * math.sin(2 * math.pi * u2),
math.sqrt(1 - u1) * math.cos(2 * math.pi * u2),
math.sqrt(u1) * math.sin(2 * math.pi * u3),
math.sqrt(u1) * math.cos(2 * math.pi * u3),
]
)
.unsqueeze(0)
.to(self.device)
)
def _create_animation_folders(self, animation_path: str) -> None:
"""Create subfolders to store animation frames."""
os.makedirs(animation_path)
depth_path = os.path.join(animation_path, "depth")
os.makedirs(depth_path)
error_path = os.path.join(animation_path, "depth_error")
os.makedirs(error_path)
sdf_path = os.path.join(animation_path, "sdf")
os.makedirs(sdf_path)
def _save_inputs(
self,
animation_path: str,
color_images: torch.Tensor,
depth_images: torch.Tensor,
instance_masks: torch.Tensor,
) -> None:
color_path = os.path.join(animation_path, "color_input.png")
fig, ax = plt.subplots()
ax.imshow(color_images[0].cpu().numpy())
fig.savefig(color_path)
plt.close(fig)
depth_path = os.path.join(animation_path, "depth_input.png")
fig, ax = plt.subplots()
ax.imshow(depth_images[0].cpu().numpy())
fig.savefig(depth_path)
plt.close(fig)
mask_path = os.path.join(animation_path, "mask.png")
fig, ax = plt.subplots()
ax.imshow(instance_masks[0].cpu().numpy())
fig.savefig(mask_path)
plt.close(fig)
def _save_preprocessed_inputs(
self,
animation_path: str,
depth_images: torch.Tensor,
) -> None:
depth_path = os.path.join(animation_path, "preprocessed_depth_input.png")
fig, ax = plt.subplots()
ax.imshow(depth_images[0].cpu().numpy())
fig.savefig(depth_path)
plt.close(fig)
def _save_current_state(
self,
depth_images: torch.Tensor,
animation_path: str,
camera_positions: torch.Tensor,
camera_orientations: torch.Tensor,
position: torch.Tensor,
orientation: torch.Tensor,
scale_inv: torch.Tensor,
sdf: torch.Tensor,
) -> None:
q_w2c = quaternion_utils.quaternion_invert(camera_orientations[0])
position_c = quaternion_utils.quaternion_apply(
q_w2c, position - camera_positions[0]
)
orientation_c = quaternion_utils.quaternion_multiply(q_w2c, orientation)
current_depth = self.render(sdf[0, 0], position_c, orientation_c, scale_inv)
depth_path = os.path.join(
animation_path, "depth", f"{self._current_iteration:06}.png"
)
fig, ax = plt.subplots()
ax.imshow(current_depth.cpu().numpy(), interpolation="none")
fig.savefig(depth_path)
plt.close(fig)
error_image = torch.abs(current_depth - depth_images[0])
error_image[depth_images[0] == 0] = 0
error_image[current_depth == 0] = 0
error_path = os.path.join(
animation_path, "depth_error", f"{self._current_iteration:06}.png"
)
fig, ax = plt.subplots()
ax.imshow(error_image.cpu().numpy(), interpolation="none")
fig.savefig(error_path)
plt.close(fig)
unscaled_threshold = self.config["threshold"] * scale_inv.item()
mesh = sdf_utils.mesh_from_sdf(
sdf[0, 0].cpu().numpy(),
unscaled_threshold,
complete_mesh=True,
)
sdf_path = os.path.join(
animation_path, "sdf", f"{self._current_iteration:06}.png"
)
# map y -> z; z -> y
transform = np.eye(4)
transform[0:3, 0:3] = np.array([[-1, 0, 0], [0, 0, 1], [0, 1, 0]])
fig, ax = plt.subplots()
sdf_utils.plot_mesh(mesh, transform=transform, plot_object=ax)
fig.savefig(sdf_path)
plt.close(fig)
def _create_animations(self, animation_path: str) -> None:
names = ["sdf", "depth", "depth_error"]
for name in names:
frame_folder = os.path.join(animation_path, name)
video_name = os.path.join(animation_path, f"{name}.mp4")
ffmpeg.input(
os.path.join(frame_folder, "*.png"), pattern_type="glob", framerate=30
).output(video_name).run()
@staticmethod
def _adjust_categorical_posterior(
posterior: torch.Tensor, prior: torch.Tensor, train_prior: torch.Tensor
) -> torch.Tensor:
"""Adjust categorical posterior distribution.
Posterior is calculated with a train_prior
Args:
posterior:
Posterior distribution computed assuming train_prior.
Shape (..., K). K being number of categories.
prior:
The desired new prior distribution.
Same shape as posterior.
train_prior:
The prior distribution used to compute the posterior.
If None, equal probability for each category will be assumed.
Same shape as posterior.
Returns:
The categorical posterior, adjusted such that prior is prior, instead of
train_prior.
Same shape as posterior.
"""
adjusted_posterior = posterior.clone()
# adjust if prior different from training
adjusted_posterior *= prior
if train_prior is not None:
adjusted_posterior /= train_prior
adjusted_posterior = torch.nn.functional.normalize(
adjusted_posterior, p=1, dim=-1
)
return adjusted_posterior
|