Skip to content

real_data

Simple script to run inference on real data.

Usage (evaluation on random RGB-D images from folder): python -m sdfest.estimation.scripts.real_data --config estimation/configs/rgbd_objects_uw.yaml estimation/configs/mug.yaml --folder data/rgbd_objects_uw/coffee_mug/

Usage (evaluation on single RGB image from Redwood or RGB-D objects dataset): python -m sdfest.estimation.scripts.real_data --config configs/rgbd_objects_uw.yaml configs/mug.yaml --input rgbd_objects_uw/coffee_mug/coffee_mug_1/coffee_mug_1_1_103.png

Specific parameters

measure_runtime: if True, a breakdown of the runtime will be generated only supported for single input out_folder: if provided and measure_runtime is true, the runtime results are written to file visualize_optimization: whether to visualize optimization while at it visualize_input: whether to visualize the input create_animation: If true, three animations will be created. One for depth optimization, depth error, and mesh.

load_real275_rgbd(rgb_path)

Load RGB-D image from RGB path.

Parameters:

Name Type Description Default
rgb_path str

path to RGB image

required

Returns:

Type Description
Tuple[ndarray, ndarray, str, str]

Tuple containing: - The color image, float32, RGB, 0-1, shape (H,W,C). - The depth image, float32, in meters, shape (H,W). - The color path. - The depth path.

Source code in sdfest/estimation/scripts/real_data.py
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def load_real275_rgbd(rgb_path: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load RGB-D image from RGB path.

    Args:
        rgb_path: path to RGB image

    Returns:
        Tuple containing:
            - The color image, float32, RGB, 0-1, shape (H,W,C).
            - The depth image, float32, in meters, shape (H,W).
            - The color path.
            - The depth path.
    """
    depth_path = rgb_path[:-10] + "_depth.png"
    color_img = np.asarray(o3d.io.read_image(rgb_path), dtype=np.float32) / 255
    depth_img = (
        np.asarray(
            o3d.io.read_image(depth_path),
            dtype=np.float32,
        )
        * 0.001
    )
    return color_img, depth_img, rgb_path, depth_path

load_real275_sample(folder)

Load a sample from RGBD Object dataset.

https://rgbd-dataset.cs.washington.edu/dataset/

Parameters:

Name Type Description Default
folder str

The root folder of the dataset.

required

Returns:

Type Description
Tuple[ndarray, ndarray, str, str]

See load_real275_rgbd.

Source code in sdfest/estimation/scripts/real_data.py
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def load_real275_sample(folder: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load a sample from RGBD Object dataset.

    https://rgbd-dataset.cs.washington.edu/dataset/

    Args:
        folder: The root folder of the dataset.

    Returns:
        See load_real275_rgbd.
    """
    files = glob.glob(folder + "/**/*color.png", recursive=True)
    rgb_path = random.choice(files)
    return load_real275_rgbd(rgb_path)

load_redwood_rgbd(rgb_path)

Load RGB-D image from RGB path of Redwood dataset.

Parameters:

Name Type Description Default
rgb_path str

path to RGB image

required

Returns:

Type Description
Tuple[ndarray, ndarray, str, str]

Tuple containing: - The color image, float32, RGB, 0-1, shape (H,W,C). - The depth image, float32, in meters, shape (H,W). - The color path. - The depth path.

Source code in sdfest/estimation/scripts/real_data.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def load_redwood_rgbd(rgb_path: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load RGB-D image from RGB path of Redwood dataset.

    Args:
        rgb_path: path to RGB image

    Returns:
        Tuple containing:
            - The color image, float32, RGB, 0-1, shape (H,W,C).
            - The depth image, float32, in meters, shape (H,W).
            - The color path.
            - The depth path.
    """
    depth_dir = os.path.join(os.path.dirname(rgb_path), "..", "depth")

    rgb_timestamp = int(rgb_path[-16:-4])

    # find closest depth image in time
    depth_paths = glob.glob(depth_dir + "/*.png")
    depth_timestamps = np.array([int(p[-16:-4]) for p in depth_paths])
    ind = np.argmin(np.abs(depth_timestamps - rgb_timestamp))
    depth_path = depth_paths[ind]

    color_img = np.asarray(o3d.io.read_image(rgb_path), dtype=np.float32) / 255

    depth_img = (
        np.asarray(
            o3d.io.read_image(depth_path),
            dtype=np.float32,
        )
        * 0.001
    )
    return color_img, depth_img, rgb_path, depth_path

load_redwood_sample(folder)

Load a sample from Redwood dataset.

Parameters:

Name Type Description Default
folder str

The root folder of the dataset.

required

Returns:

Type Description
Tuple[ndarray, ndarray, str, str]

Tuple containing: - The color image, float32, RGB, 0-1, shape (H,W,C). - The depth image, float32, in meters, shape (H,W). - The color path. - The depth path.

Source code in sdfest/estimation/scripts/real_data.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def load_redwood_sample(folder: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load a sample from Redwood dataset.

    Args:
        folder: The root folder of the dataset.

    Returns:
        Tuple containing:
            - The color image, float32, RGB, 0-1, shape (H,W,C).
            - The depth image, float32, in meters, shape (H,W).
            - The color path.
            - The depth path.
    """
    sequence_paths = glob.glob(folder + "/*")
    sequence_path = random.choice(sequence_paths)

    rgb_dir = os.path.join(sequence_path, "rgb")
    rgb_paths = glob.glob(rgb_dir + "/*.jpg")
    rgb_path = random.choice(rgb_paths)

    return load_redwood_rgbd(rgb_path)

load_rgbd(config)

Load a single RGB-D image from path and dataset specified in config.

See the dataset specific load functions for more details of the expected folder structure.

Parameters:

Name Type Description Default
config dict

Configuration dictionary that must contain the following keys: "dataset": one of "redwood" | "rgbd_object_uw" "input": the path to the RGB image

required

Returns: Tuple containing: - The color image, float32, RGB, 0-1, shape (H,W,C). - The depth image, float32, in meters, shape (H,W). - The color path. - The depth path.

Source code in sdfest/estimation/scripts/real_data.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
def load_rgbd(config: dict) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load a single RGB-D image from path and dataset specified in config.

    See the dataset specific load functions for more details of the expected folder
    structure.

    Params:
        config: Configuration dictionary that must contain the following keys:
            "dataset": one of "redwood" | "rgbd_object_uw"
            "input": the path to the RGB image
    Returns:
        Tuple containing:
            - The color image, float32, RGB, 0-1, shape (H,W,C).
            - The depth image, float32, in meters, shape (H,W).
            - The color path.
            - The depth path.
    """
    if config["dataset"] == "redwood":
        return load_redwood_rgbd(config["input"])
    elif config["dataset"] == "rgbd_object_uw":
        return load_rgbd_object_uw_rgbd(config["input"])
    elif config["dataset"] == "real275":
        return load_real275_rgbd(config["input"])
    else:
        raise NotImplementedError(f"Dataset {config['dataset']} is not supported")

load_rgbd_object_uw_rgbd(rgb_path)

Load RGB-D image from RGB path.

Parameters:

Name Type Description Default
rgb_path str

path to RGB image

required

Returns:

Type Description
Tuple[ndarray, ndarray, str, str]

Tuple containing: - The color image, float32, RGB, 0-1, shape (H,W,C). - The depth image, float32, in meters, shape (H,W). - The color path. - The depth path.

Source code in sdfest/estimation/scripts/real_data.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def load_rgbd_object_uw_rgbd(rgb_path: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load RGB-D image from RGB path.

    Args:
        rgb_path: path to RGB image

    Returns:
        Tuple containing:
            - The color image, float32, RGB, 0-1, shape (H,W,C).
            - The depth image, float32, in meters, shape (H,W).
            - The color path.
            - The depth path.
    """
    depth_path = rgb_path[:-4] + "_depth" + rgb_path[-4:]
    color_img = np.asarray(o3d.io.read_image(rgb_path), dtype=np.float32) / 255
    depth_img = (
        np.asarray(
            o3d.io.read_image(depth_path),
            dtype=np.float32,
        )
        * 0.001
    )
    return color_img, depth_img, rgb_path, depth_path

load_rgbd_object_uw_sample(folder)

Load a sample from RGBD Object dataset.

https://rgbd-dataset.cs.washington.edu/dataset/

Parameters:

Name Type Description Default
folder str

The root folder of the dataset.

required

Returns:

Type Description
Tuple[ndarray, ndarray, str, str]

See load_rgbd_object_uw_rgbd.

Source code in sdfest/estimation/scripts/real_data.py
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def load_rgbd_object_uw_sample(folder: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load a sample from RGBD Object dataset.

    https://rgbd-dataset.cs.washington.edu/dataset/

    Args:
        folder: The root folder of the dataset.

    Returns:
        See load_rgbd_object_uw_rgbd.
    """
    files = glob.glob(folder + "/**/*[0-9].png", recursive=True)
    rgb_path = random.choice(files)
    return load_rgbd_object_uw_rgbd(rgb_path)

load_sample_from_folder(config)

Load a sample from dataset specified in config.

See the dataset specific load functions for more details of the expected folder structure.

Parameters:

Name Type Description Default
config dict

Configuration dictionary that must contain the following keys: "dataset": one of "redwood" | "rgbd_object_uw" "folder": the root folder of the dataset

required

Returns: Tuple containing: - The color image, float32, RGB, 0-1, shape (H,W,C). - The depth image, float32, in meters, shape (H,W).

Source code in sdfest/estimation/scripts/real_data.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def load_sample_from_folder(config: dict) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """Load a sample from dataset specified in config.

    See the dataset specific load functions for more details of the expected folder
    structure.

    Params:
        config: Configuration dictionary that must contain the following keys:
            "dataset": one of "redwood" | "rgbd_object_uw"
            "folder": the root folder of the dataset
    Returns:
        Tuple containing:
            - The color image, float32, RGB, 0-1, shape (H,W,C).
            - The depth image, float32, in meters, shape (H,W).
    """
    if config["dataset"] == "redwood":
        return load_redwood_sample(config["folder"])
    elif config["dataset"] == "rgbd_object_uw":
        return load_rgbd_object_uw_sample(config["folder"])
    elif config["dataset"] == "real275":
        return load_real275_sample(config["folder"])
    else:
        raise NotImplementedError(f"Dataset {config['dataset']} is not supported")

main()

Entry point of the program.

Source code in sdfest/estimation/scripts/real_data.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
def main() -> None:
    """Entry point of the program."""
    # define the arguments
    parser = argparse.ArgumentParser(description="SDF pose estimation in real data")

    # parse arguments
    parser.add_argument("--device")
    parser.add_argument("--input")
    parser.add_argument("--folder")
    parser.add_argument("--measure_runtime", type=str_to_bool, default=False)
    parser.add_argument("--visualize_optimization", type=str_to_bool, default=False)
    parser.add_argument("--visualize_input", type=str_to_bool, default=False)
    parser.add_argument("--cached_segmentation", action="store_true")
    parser.add_argument("--segmentation_dir", default="./cached_segmentations/")
    parser.add_argument("--config", default="configs/default.yaml", nargs="+")

    config = yoco.load_config_from_args(
        parser, search_paths=[".", "~/.sdfest/", sdfest.__path__[0]]
    )

    if "input" in config and "folder" in config:
        print("Only one of input and folder can be specified.")
        exit()

    if config["measure_runtime"] and config["visualize_optimization"]:
        print("Visualization not supported while measuring runtime.")
        exit()

    pipeline = SDFPipeline(config)
    create_animation = (
        config["create_animation"] if "create_animation" in config else False
    )

    timing_dict = None
    timing_dicts = []
    if config["measure_runtime"]:
        timing_dict = add_timing_decorators(pipeline)

    # Segmentation using detectron2
    print("Loading segmentation model...")
    cfg = detectron2.config.get_cfg()
    cfg.merge_from_file(
        model_zoo.get_config_file(
            "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"
        )
    )
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5  # set threshold for this model
    cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(
        "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml"
    )

    predictor = detectron2.engine.DefaultPredictor(cfg)
    print("Segmentation model loaded.")

    completed_runs = 0
    shape_optimization = True

    while True:
        if timing_dict is not None:
            timing_dict.clear()
        if "folder" in config:
            color_img, depth_img, color_path, _ = load_sample_from_folder(config)
        elif "input" in config:
            color_img, depth_img, color_path, _ = load_rgbd(config)
        else:
            print("No folder or input file specified.")
            exit()

        if timing_dict is not None:
            timing_dict["pipeline"].append([time.time(), None])
            timing_dict["segmentation"].append([time.time(), None])

        if config["cached_segmentation"]:
            # check if segmentation exists
            color_name, _ = os.path.splitext(color_path)
            color_dir = os.path.dirname(color_name)
            segmentation_dir = os.path.join(config["segmentation_dir"], color_dir)
            segmentation_path = (
                os.path.join(config["segmentation_dir"], color_name) + ".pickle"
            )
            os.makedirs(segmentation_dir, exist_ok=True)

            if os.path.isfile(segmentation_path):
                with open(segmentation_path, "rb") as f:
                    outputs = pickle.load(f)
            else:
                # compute segmentation and save
                # detectron expects (H,C,W), BGR, 0-255 as input
                detectron_color_img = color_img[:, :, ::-1] * 255
                outputs = predictor(detectron_color_img)
                with open(segmentation_path, "wb") as f:
                    pickle.dump(outputs, f)
        else:
            # detectron expects (H,C,W), BGR, 0-255 as input
            detectron_color_img = color_img[:, :, ::-1] * 255
            outputs = predictor(detectron_color_img)

        if timing_dict is not None:
            torch.cuda.synchronize()
            timing_dict["segmentation"][-1][1] = time.time()

        category_id = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]).thing_classes.index(
            config["category"]
        )
        matching_instances = []
        for i in range(len(outputs["instances"])):
            instance = outputs["instances"][i]
            if instance.pred_classes != category_id:
                continue
            matching_instances.append(instance)

        matching_instances.sort(key=lambda k: k.pred_masks.sum())

        if not matching_instances:
            print("Warning: category not detected in input")
        else:
            print("Category detected")

        for instance in matching_instances:
            if create_animation:
                animation_path = os.path.join(
                    os.getcwd(),
                    f"animation_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}",
                )
            else:
                animation_path = None

            if config["visualize_input"]:
                v = Visualizer(
                    color_img * 255,
                    MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
                    scale=1.2,
                )
                out = v.draw_instance_predictions(instance.to("cpu"))
                plt.imshow(out.get_image())
                plt.show()
                plt.imshow(depth_img)
                plt.show()
            depth_tensor = torch.from_numpy(depth_img).to(config["device"])
            instance_mask = instance.pred_masks.cuda()[0]
            color_img_tensor = torch.from_numpy(color_img).to(config["device"])

            try:
                position, orientation, scale, shape = pipeline(
                    depth_tensor,
                    instance_mask,
                    color_img_tensor,
                    visualize=config["visualize_optimization"],
                    animation_path=animation_path,
                    shape_optimization=shape_optimization,
                )
            except NoDepthError:
                print("No depth data, skipping")

            break  # comment to evaluate all instances, instead of largest only

        if timing_dict is not None:
            torch.cuda.synchronize()
            timing_dict["pipeline"][-1][1] = time.time()

            if completed_runs != 0 or not config["skip_first_run"]:
                timing_dicts.append(copy.deepcopy(timing_dict))
                timing_dicts[-1]["shape_optimization"] = shape_optimization

            print(f"\r{completed_runs+1}/{config['runs']}", end="")

        completed_runs += 1

        # only run single evaluation for single file
        if "input" in config and not config["measure_runtime"]:
            break
        elif config["measure_runtime"] and completed_runs == config["runs"]:
            if shape_optimization:
                shape_optimization = False
                completed_runs = 0
                print("")
            else:
                print("")
                break

    if config["measure_runtime"]:
        generate_runtime_overview(config, timing_dicts)

str_to_bool(v)

Try to convert string to boolean.

From: https://stackoverflow.com/a/43357954

Source code in sdfest/estimation/scripts/real_data.py
271
272
273
274
275
276
277
278
279
280
281
282
283
def str_to_bool(v: str) -> bool:
    """Try to convert string to boolean.

    From: https://stackoverflow.com/a/43357954
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("Boolean value expected.")