Skip to content

nocs_dataset.py

cpas_toolbox.datasets.nocs_dataset

Module providing dataset class for NOCS datasets (CAMERA / REAL).

NOCSDataset

Bases: Dataset

Dataset class for NOCS dataset.

CAMERA and REAL are training sets. CAMERA25 and REAL275 are test data. Some papers use CAMERA25 as validation when benchmarking REAL275.

Datasets can be found here: https://github.com/hughw19/NOCS_CVPR2019/tree/master

Expected directory format

{root_dir}/real_train/... {root_dir}/real_test/... {root_dir}/gts/... {root_dir}/obj_models/... {root_dir}/camera_composed_depth/... {root_dir}/val/... {root_dir}/train/... {root_dir}/fixed_real_test_obj_models/...

Which is easily obtained by downloading all the provided files and extracting them into the same directory.

Necessary preprocessing of this data is performed during first initialization per and is saved to {root_dir}/cpas_toolbox/...

Source code in cpas_toolbox/datasets/nocs_dataset.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
class NOCSDataset(torch.utils.data.Dataset):
    """Dataset class for NOCS dataset.

    CAMERA* and REAL* are training sets.
    CAMERA25 and REAL275 are test data.
    Some papers use CAMERA25 as validation when benchmarking REAL275.

    Datasets can be found here:
    https://github.com/hughw19/NOCS_CVPR2019/tree/master

    Expected directory format:
        {root_dir}/real_train/...
        {root_dir}/real_test/...
        {root_dir}/gts/...
        {root_dir}/obj_models/...
        {root_dir}/camera_composed_depth/...
        {root_dir}/val/...
        {root_dir}/train/...
        {root_dir}/fixed_real_test_obj_models/...
    Which is easily obtained by downloading all the provided files and extracting them
    into the same directory.

    Necessary preprocessing of this data is performed during first initialization per
    and is saved to
        {root_dir}/cpas_toolbox/...
    """

    num_categories = 7
    category_id_to_str = {
        0: "unknown",
        1: "bottle",
        2: "bowl",
        3: "camera",
        4: "can",
        5: "laptop",
        6: "mug",
    }
    category_str_to_id = {v: k for k, v in category_id_to_str.items()}

    class Config(TypedDict, total=False):
        """Configuration dictionary for NOCSDataset.

        Attributes:
            root_dir: See NOCSDataset docstring.
            split:
                The dataset split. The following strings are supported:
                    "camera_train": 275000 images, synthetic objects + real background
                    "camera_val": 25000 images, synthetic objects + real background
                    "real_train": 4300 images in 7 scenes, real
                    "real_test": 2750 images in 6 scenes, real
            mask_pointcloud: Whether the returned pointcloud will be masked.
            normalize_pointcloud:
                Whether the returned pointcloud and position will be normalized, such
                that pointcloud centroid is at the origin.
            scale_convention:
                Which scale is returned. The following strings are supported:
                    "diagonal":
                        Length of bounding box' diagonal. This is what NOCS uses.
                    "max": Maximum side length of bounding box.
                    "half_max": Half maximum side length of bounding box.
                    "full": Bounding box side lengths. Shape (3,).
            camera_convention:
                Which camera convention is used for position and orientation. One of:
                    "opengl": x right, y up, z back
                    "opencv": x right, y down, z forward
                Note that this does not influence how the dataset is processed, only the
                returned position and quaternion.
            orientation_repr:
                Which orientation representation is used. Currently only "quaternion"
                supported.
            remap_y_axis:
                If not None, the NOCS y-axis will be mapped to the provided axis.
                Resulting coordinate system will always be right-handed.
                This is typically the up-axis.
                Note that NOCS object models are NOT aligned the same as ShapeNetV2.
                To get ShapeNetV2 alignment: y
                One of: "x", "y", "z", "-x", "-y", "-z"
            remap_x_axis:
                If not None, the original x-axis will be mapped to the provided axis.
                Resulting coordinate system will always be right-handed.
                Note that NOCS object models are NOT aligned the same as ShapeNetV2.
                To get ShapeNetV2 alignment: -z
                One of: "x", "y", "z", "-x", "-y", "-z"
            category_str:
                If not None, only samples from the matching category will be returned.
                See NOCSDataset.category_id_to_str for admissible category strings.
        """

        root_dir: str
        split: str
        mask_pointcloud: bool
        normalize_pointcloud: bool
        scale_convention: str
        camera_convention: str
        orientation_repr: str
        remap_y_axis: Optional[str]
        remap_x_axis: Optional[str]
        category_str: Optional[str]

    default_config: Config = {
        "root_dir": None,
        "split": None,
        "mask_pointcloud": False,
        "normalize_pointcloud": False,
        "camera_convention": "opengl",
        "scale_convention": "half_max",
        "orientation_repr": "quaternion",
        "category_str": None,
        "remap_y_axis": None,
        "remap_x_axis": None,
    }

    def __init__(
        self,
        config: Config,
    ) -> None:
        """Initialize the dataset.

        Args:
            config:
                Configuration dictionary of dataset. Provided dictionary will be merged
                with default_dict. See NOCSDataset.Config for supported keys.
        """
        config = yoco.load_config(config, current_dict=NOCSDataset.default_config)
        self._root_dir_path = utils.resolve_path(config["root_dir"])
        self._split = config["split"]
        self._check_dirs()
        self._camera_convention = config["camera_convention"]
        self._camera = self._get_split_camera()
        self._preprocess_path = os.path.join(
            self._root_dir_path, "cpas_toolbox", self._split
        )
        if not os.path.isdir(self._preprocess_path):
            self._preprocess_dataset()
        self._mask_pointcloud = config["mask_pointcloud"]
        self._normalize_pointcloud = config["normalize_pointcloud"]
        self._scale_convention = config["scale_convention"]
        self._sample_files = self._get_sample_files(config["category_str"])
        self._remap_y_axis = config["remap_y_axis"]
        self._remap_x_axis = config["remap_x_axis"]
        self._orientation_repr = config["orientation_repr"]

    def _check_dirs(self) -> None:
        directories = self._get_dirs()

        # required directories
        if all(os.path.exists(directory) for directory in directories):
            pass
        else:
            print(
                f"NOCS dataset ({self._split} split) not found, do you want to download"
                " it into the following directory:"
            )
            print("  ", self._root_dir_path)
            while True:
                decision = input("(Y/n) ").lower()
                if decision == "" or decision == "y":
                    self._download_dataset()
                    break
                elif decision == "n":
                    print("Dataset not found. Aborting.")
                    exit(0)

    def _get_dirs(self) -> List[str]:
        """Return required list of directories for current split."""
        dirs = []

        # gts only available for real test and camera val
        if self._split in ["real_test", "camera_val"]:
            dirs.append(os.path.join(self._root_dir_path, "gts"))

        dirs.append(os.path.join(self._root_dir_path, "obj_models"))

        # Fixed object model, need to be downloaded separately
        if self._split == "real_test":
            dirs.append(os.path.join(self._root_dir_path, "fixed_real_test_obj_models"))

        # full depths for CAMERA
        if self._split in ["camera_val", "camera_train"]:
            dirs.append(os.path.join(self._root_dir_path, "camera_full_depths"))

        if self._split == "camera_train":
            dirs.append(os.path.join(self._root_dir_path, "train"))
        elif self._split == "camera_val":
            dirs.append(os.path.join(self._root_dir_path, "val"))
        elif self._split in ["real_train", "real_test"]:
            dirs.append(os.path.join(self._root_dir_path, self._split))
        else:
            raise ValueError(f"Specified split {self._split} is not supported.")

        return dirs

    def _download_dataset(self) -> None:
        missing_dirs = [d for d in self._get_dirs() if not os.path.exists(d)]
        for missing_dir in missing_dirs:
            download_dir, identifier = os.path.split(missing_dir)
            os.makedirs(download_dir, exist_ok=True)
            if identifier == "gts":
                zip_path = os.path.join(download_dir, "gts.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/gts.zip", zip_path
                )
            elif identifier == "obj_models":
                zip_path = os.path.join(download_dir, "obj_models.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/obj_models.zip",
                    zip_path,
                )
            elif identifier == "camera_full_depths":
                zip_path = os.path.join(download_dir, "camera_full_depths.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/camera_composed_depth.zip",
                    zip_path,
                )
                z = zipfile.ZipFile(zip_path)
            elif identifier == "train":
                zip_path = os.path.join(download_dir, "train.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/camera_train.zip",
                    zip_path,
                )
            elif identifier == "val":
                zip_path = os.path.join(download_dir, "val.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/camera_val25K.zip",
                    zip_path,
                )
            elif identifier == "real_train":
                zip_path = os.path.join(download_dir, "real_train.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/real_train.zip",
                    zip_path,
                )
            elif identifier == "real_test":
                zip_path = os.path.join(download_dir, "real_test.zip")
                utils.download(
                    "http://download.cs.stanford.edu/orion/nocs/real_test.zip", zip_path
                )
            elif identifier == "fixed_real_test_obj_models":
                zip_path = os.path.join(download_dir, "fixed_real_test_obj_models.zip")
                utils.download(
                    "https://github.com/roym899/pose_and_shape_evaluation/releases/download/v1.0.0/fixed_real_test_obj_models.zip",
                    zip_path,
                )
            else:
                raise ValueError(f"Downloading dir {missing_dir} unsupported.")
            z = zipfile.ZipFile(zip_path)
            z.extractall(download_dir)
            z.close()
            os.remove(zip_path)

    def __len__(self) -> int:
        """Return number of sample in dataset."""
        return len(self._sample_files)

    def __getitem__(self, idx: int) -> dict:
        """Return a sample of the dataset.

        Args:
            idx: Index of the instance.

        Returns:
            Sample containing the following items:
                "color"
                "depth"
                "mask"
                "pointset"
                "position"
                "orientation"
                "quaternion"
                "scale"
                "color_path"
        """
        sample_file = self._sample_files[idx]
        sample_data = pickle.load(open(sample_file, "rb"))
        sample = self._sample_from_sample_data(sample_data)
        return sample

    def _preprocess_dataset(self) -> None:
        """Create preprocessing files for the current split.

        One file per sample, which currently means per valid object mask will be
        created.

        Preprocessing will be stored on disk to {root_dir}/cpas_toolbox/...
        This function will not store the preprocessing, so it still has to be loaded
        afterwards.
        """
        os.makedirs(self._preprocess_path)

        self._fix_obj_models()

        self._start_time = time.time()
        self._color_paths = self._get_color_files()

        Parallel(n_jobs=-1)(
            (
                delayed(self._preprocess_color_path)(i, color_path)
                for i, color_path in enumerate(self._color_paths)
            )
        )

        # store dictionary to map category to files
        sample_files = self._get_sample_files()
        category_str_to_files = {
            category_str: [] for category_str in NOCSDataset.category_id_to_str.values()
        }
        for sample_file in tqdm(sample_files):
            sample_data = pickle.load(open(sample_file, "rb"))
            category_id = sample_data["category_id"]
            category_str = NOCSDataset.category_id_to_str[category_id]
            _, file_name = os.path.split(sample_file)
            category_str_to_files[category_str].append(file_name)

        category_json_path = os.path.join(self._preprocess_path, "categories.json")
        with open(category_json_path, "w") as f:
            json.dump(dict(category_str_to_files), f)

        print(f"Finished preprocessing for {self._split}.", end="\033[K\n")

    def _fix_obj_models(self) -> None:
        """Fix issues with fileextensions.

        Some png files have jpg extension. This function fixes these models.
        """
        glob_pattern = os.path.join(self._root_dir_path, "**", "*.jpg")
        files = glob(glob_pattern, recursive=True)
        for filepath in files:
            what = imghdr.what(filepath)
            if what == "png":
                print("Fixing: ", filepath)
                obj_dir_path, problematic_filename = os.path.split(filepath)
                name, _ = problematic_filename.split(".")
                fixed_filename = f"fixed_{name}.png"
                fixed_filepath = os.path.join(obj_dir_path, fixed_filename)

                mtl_filepath = os.path.join(obj_dir_path, "model.mtl")
                bu_mtl_filepath = os.path.join(obj_dir_path, "model.mtl.old")
                copyfile(mtl_filepath, bu_mtl_filepath)

                copyfile(filepath, fixed_filepath)

    def _update_preprocess_progress(self, image_id: int) -> None:
        current_time = time.time()
        duration = current_time - self._start_time
        imgs_per_sec = image_id / duration
        if image_id > 10:
            remaining_imgs = len(self._color_paths) - image_id
            remaining_secs = remaining_imgs / imgs_per_sec
            remaining_time_str = str(datetime.timedelta(seconds=round(remaining_secs)))
        else:
            remaining_time_str = "N/A"
        print(
            f"Preprocessing image: {image_id:>10} / {len(self._color_paths)}"
            f" {image_id / len(self._color_paths) * 100:>6.2f}%"  # progress percentage
            f" Remaining time: {remaining_time_str}"  # remaining time
            "\033[K",  # clear until end of line
            end="\r",  # overwrite previous
        )

    def _preprocess_color_path(self, image_id: int, color_path: str) -> None:
        counter = 0
        self._update_preprocess_progress(image_id)

        depth_path = self._depth_path_from_color_path(color_path)
        if not os.path.isfile(depth_path):
            print(f"Missing depth file {depth_path}. Skipping.", end="\033[K\n")
            return

        mask_path = self._mask_path_from_color_path(color_path)
        meta_path = self._meta_path_from_color_path(color_path)
        meta_data = pd.read_csv(
            meta_path, sep=" ", header=None, converters={2: lambda x: str(x)}
        )
        instances_mask = self._load_mask(mask_path)
        mask_ids = np.unique(instances_mask).tolist()
        gt_id = 0  # GT only contains valid objects of interests and is 0-indexed
        for mask_id in mask_ids:

            if mask_id == 255:  # 255 is background
                continue
            match = meta_data[meta_data.iloc[:, 0] == mask_id]
            if match.empty:
                print(
                    f"Warning: mask {mask_id} not found in {meta_path}", end="\033[K\n"
                )
            elif match.shape[0] != 1:
                print(
                    f"Warning: mask {mask_id} not unique in {meta_path}", end="\033[K\n"
                )

            meta_row = match.iloc[0]
            category_id = meta_row.iloc[1]
            if category_id == 0:  # unknown / distractor object
                continue

            try:
                (
                    position,
                    orientation_q,
                    extents,
                    nocs_transform,
                ) = self._get_pose_and_scale(color_path, mask_id, gt_id, meta_row)
            except nocs_utils.PoseEstimationError:
                print(
                    "Insufficient data for pose estimation. "
                    f"Skipping {color_path}:{mask_id}.",
                    end="\033[K\n",
                )
                continue
            except ObjectError:
                print(
                    "Insufficient object mesh for pose estimation. "
                    f"Skipping {color_path}:{mask_id}.",
                    end="\033[K\n",
                )
                continue

            obj_path = self._get_obj_path(meta_row)
            sample_info = {
                "color_path": color_path,
                "depth_path": depth_path,
                "mask_path": mask_path,
                "mask_id": mask_id,
                "category_id": category_id,
                "obj_path": obj_path,
                "nocs_transform": nocs_transform,
                "position": position,
                "orientation_q": orientation_q,
                "extents": extents,
                "nocs_scale": torch.linalg.norm(extents),
                "max_extent": torch.max(extents),
            }
            out_file = os.path.join(
                self._preprocess_path, f"{image_id:08}_{counter}.pkl"
            )
            pickle.dump(sample_info, open(out_file, "wb"))
            counter += 1
            gt_id += 1

    def _get_color_files(self) -> list:
        """Return list of paths of color images of the selected split."""
        if self._split == "camera_train":
            glob_pattern = os.path.join(
                self._root_dir_path, "train", "**", "*_color.png"
            )
            return sorted(glob(glob_pattern, recursive=True))
        elif self._split == "camera_val":
            glob_pattern = os.path.join(self._root_dir_path, "val", "**", "*_color.png")
            return sorted(glob(glob_pattern, recursive=True))
        elif self._split == "real_train":
            glob_pattern = os.path.join(
                self._root_dir_path, "real_train", "**", "*_color.png"
            )
            return sorted(glob(glob_pattern, recursive=True))
        elif self._split == "real_test":
            glob_pattern = os.path.join(
                self._root_dir_path, "real_test", "**", "*_color.png"
            )
            return sorted(glob(glob_pattern, recursive=True))
        else:
            raise ValueError(f"Specified split {self._split} is not supported.")

    def _get_sample_files(self, category_str: Optional[str] = None) -> list:
        """Return sorted list of sample file paths.

        Sample files are generated by NOCSDataset._preprocess_dataset.

        Args:
            category_str:
                If not None, only instances of the provided category will be returned.

        Returns:
            List of sample_data files.
        """
        glob_pattern = os.path.join(self._preprocess_path, "*.pkl")
        sample_files = glob(glob_pattern)
        sample_files.sort()
        if category_str is None:
            return sample_files
        if category_str not in NOCSDataset.category_str_to_id:
            raise ValueError(f"Unsupported category_str {category_str}.")

        category_json_path = os.path.join(self._preprocess_path, "categories.json")
        with open(category_json_path, "r") as f:
            category_str_to_filenames = json.load(f)
        filtered_sample_files = [
            os.path.join(self._preprocess_path, fn)
            for fn in category_str_to_filenames[category_str]
        ]
        return filtered_sample_files

    def _get_split_camera(self) -> None:
        """Return camera information for selected split."""
        # from: https://github.com/hughw19/NOCS_CVPR2019/blob/master/detect_eval.py
        if self._split in ["real_train", "real_test"]:
            return camera_utils.Camera(
                width=640,
                height=480,
                fx=591.0125,
                fy=590.16775,
                cx=322.525,
                cy=244.11084,
                pixel_center=0.0,
            )
        elif self._split in ["camera_train", "camera_val"]:
            return camera_utils.Camera(
                width=640,
                height=480,
                fx=577.5,
                fy=577.5,
                cx=319.5,
                cy=239.5,
                pixel_center=0.0,
            )
        else:
            raise ValueError(f"Specified split {self._split} is not supported.")

    def _sample_from_sample_data(self, sample_data: dict) -> dict:
        """Create dictionary containing a single sample."""
        color = torch.from_numpy(
            np.asarray(Image.open(sample_data["color_path"]), dtype=np.float32) / 255
        )
        depth = self._load_depth(sample_data["depth_path"])
        instances_mask = self._load_mask(sample_data["mask_path"])
        instance_mask = instances_mask == sample_data["mask_id"]

        pointcloud_mask = instance_mask if self._mask_pointcloud else None
        pointcloud = pointset_utils.depth_to_pointcloud(
            depth,
            self._camera,
            mask=pointcloud_mask,
            convention=self._camera_convention,
        )

        # adjust camera convention for position, orientation and scale
        position = pointset_utils.change_position_camera_convention(
            sample_data["position"], "opencv", self._camera_convention
        )

        # orientation / scale
        orientation_q, extents = self._change_axis_convention(
            sample_data["orientation_q"], sample_data["extents"]
        )
        orientation_q = pointset_utils.change_orientation_camera_convention(
            orientation_q, "opencv", self._camera_convention
        )
        orientation = self._quat_to_orientation_repr(orientation_q)
        scale = self._get_scale(sample_data, extents)

        # normalize pointcloud & position
        if self._normalize_pointcloud:
            pointcloud, centroid = pointset_utils.normalize_points(pointcloud)
            position = position - centroid

        sample = {
            "color": color,
            "depth": depth,
            "pointset": pointcloud,
            "mask": instance_mask,
            "position": position,
            "orientation": orientation,
            "quaternion": orientation_q,
            "scale": scale,
            "color_path": sample_data["color_path"],
            "obj_path": sample_data["obj_path"],
            "category_id": sample_data["category_id"],
            "category_str": NOCSDataset.category_id_to_str[sample_data["category_id"]],
        }
        return sample

    def _depth_path_from_color_path(self, color_path: str) -> str:
        """Return path to depth file from color filepath."""
        if self._split in ["real_train", "real_test"]:
            depth_path = color_path.replace("color", "depth")
        elif self._split in ["camera_train"]:
            depth_path = color_path.replace("color", "composed")
            depth_path = depth_path.replace("/train/", "/camera_full_depths/train/")
        elif self._split in ["camera_val"]:
            depth_path = color_path.replace("color", "composed")
            depth_path = depth_path.replace("/val/", "/camera_full_depths/val/")
        else:
            raise ValueError(f"Specified split {self._split} is not supported.")
        return depth_path

    def _mask_path_from_color_path(self, color_path: str) -> str:
        """Return path to mask file from color filepath."""
        mask_path = color_path.replace("color", "mask")
        return mask_path

    def _meta_path_from_color_path(self, color_path: str) -> str:
        """Return path to meta file from color filepath."""
        meta_path = color_path.replace("color.png", "meta.txt")
        return meta_path

    def _nocs_map_path_from_color_path(self, color_path: str) -> str:
        """Return NOCS map filepath from color filepath."""
        nocs_map_path = color_path.replace("color.png", "coord.png")
        return nocs_map_path

    def _get_pose_and_scale(
        self, color_path: str, mask_id: int, gt_id: int, meta_row: pd.Series
    ) -> tuple:
        """Return position, orientation, scale and NOCS transform.

        All of those follow OpenCV (x right, y down, z forward) convention.

        Args:
            color_path: Path to the color file.
            mask_id: Instance id in the instances mask.
            gt_id:
                Ground truth id. This is 0-indexed id of valid instances in meta file.
            meta_row:
                Matching row of meta file. Contains necessary information about mesh.

        Returns:
            position (torch.Tensor):
                Position of object center in camera frame. Shape (3,).
            quaternion (torch.Tensor):
                Orientation of object in camera frame.
                Scalar-last quaternion, shape (4,).
            extents (torch.Tensor):
                Bounding box side lengths.
            nocs_transformation (torch.Tensor):
                Transformation from centered [-0.5,0.5]^3 NOCS coordinates to camera.
        """
        gts_path = self._get_gts_path(color_path)
        obj_path = self._get_obj_path(meta_row)
        if self._split == "real_test":
            # only use gt for real test data, since there are errors in camera val
            gts_data = pickle.load(open(gts_path, "rb"))
            nocs_transform = gts_data["gt_RTs"][gt_id]
            position = nocs_transform[0:3, 3]
            rot_scale = nocs_transform[0:3, 0:3]
            nocs_scales = np.sqrt(np.sum(rot_scale**2, axis=0))
            rotation_matrix = rot_scale / nocs_scales[:, None]
            nocs_scale = nocs_scales[0]
        else:  # camera_train, camera_val, real_train
            # use ground truth NOCS mask to perform alignment
            (
                position,
                rotation_matrix,
                nocs_scale,
                nocs_transform,
            ) = self._estimate_object(color_path, mask_id)

        orientation_q = Rotation.from_matrix(rotation_matrix).as_quat()
        mesh_extents = self._get_mesh_extents_from_obj(obj_path)

        if "camera" in self._split:
            # CAMERA / ShapeNet meshes are normalized s.t. diagonal == 1
            # get metric extents by scaling with the diagonal
            extents = nocs_scale * mesh_extents
        elif "real" in self._split:
            # REAL object meshes are not normalized
            extents = mesh_extents
        else:
            raise ValueError(f"Specified split {self._split} is not supported.")

        position = torch.Tensor(position)
        orientation_q = torch.Tensor(orientation_q)
        extents = torch.Tensor(extents)
        nocs_transform = torch.Tensor(nocs_transform)
        return position, orientation_q, extents, nocs_transform

    def _get_gts_path(self, color_path: str) -> Optional[str]:
        """Return path to gts file from color filepath.

        Return None if split does not have ground truth information.
        """
        if self._split == "real_test":
            gts_dir_path = os.path.join(self._root_dir_path, "gts", "real_test")
        elif self._split == "camera_val":
            gts_dir_path = os.path.join(self._root_dir_path, "gts", "val")
        else:
            return None

        path = os.path.normpath(color_path)
        split_path = path.split(os.sep)
        number = path[-14:-10]
        gts_filename = f"results_{split_path[-3]}_{split_path[-2]}_{number}.pkl"
        gts_path = os.path.join(gts_dir_path, gts_filename)
        return gts_path

    def _get_obj_path(self, meta_row: pd.Series) -> str:
        """Return path to object file from meta data row."""
        if "camera" in self._split:  # ShapeNet mesh
            synset_id = meta_row.iloc[2]
            object_id = meta_row.iloc[3]
            obj_path = os.path.join(
                self._root_dir_path,
                "obj_models",
                self._split.replace("camera_", ""),
                synset_id,
                object_id,
                "model.obj",
            )
        elif "real_test" in self._split:  # Fixed REAL test meshes
            object_id = meta_row.iloc[2]
            obj_path = os.path.join(
                self._root_dir_path,
                "fixed_real_test_obj_models",
                object_id + ".obj",
            )
        elif "real_train" in self._split:  # REAL train mesh (not complete)
            object_id = meta_row.iloc[2]
            obj_path = os.path.join(
                self._root_dir_path, "obj_models", self._split, object_id + ".obj"
            )
        else:
            raise ValueError(f"Specified split {self._split} is not supported.")
        return obj_path

    def _get_mesh_extents_from_obj(self, obj_path: str) -> torch.Tensor:
        """Return maximum extent of bounding box from obj filepath.

        Note that this is normalized extent (with diagonal == 1) in the case of CAMERA
        dataset, and unnormalized (i.e., metric) extent in the case of REAL dataset.
        """
        mesh = o3d.io.read_triangle_mesh(obj_path)
        vertices = np.asarray(mesh.vertices)
        if len(vertices) == 0:
            raise ObjectError()
        extents = np.max(vertices, axis=0) - np.min(vertices, axis=0)
        return torch.Tensor(extents)

    def _load_mask(self, mask_path: str) -> torch.Tensor:
        """Load mask from mask filepath."""
        mask_img = np.asarray(Image.open(mask_path), dtype=np.uint8)
        if mask_img.ndim == 3 and mask_img.shape[2] == 4:  # CAMERA masks are RGBA
            instances_mask = mask_img[:, :, 0]  # use first channel only
        else:  # REAL masks are grayscale
            instances_mask = mask_img
        return torch.from_numpy(instances_mask)

    def _load_depth(self, depth_path: str) -> torch.Tensor:
        """Load depth from depth filepath."""
        depth = torch.from_numpy(
            np.asarray(Image.open(depth_path), dtype=np.float32) * 0.001
        )
        return depth

    def _load_nocs_map(self, nocs_map_path: str) -> torch.Tensor:
        """Load NOCS map from NOCS map filepath.

        Returns:
            NOCS map where each channel corresponds to one dimension in NOCS.
            Coordinates are normalized to [0,1], shape (H,W,3).
        """
        nocs_map = torch.from_numpy(
            np.asarray(Image.open(nocs_map_path), dtype=np.float32) / 255
        )
        # z-coordinate has to be flipped
        # see https://github.com/hughw19/NOCS_CVPR2019/blob/14dbce775c3c7c45bb7b19269bd53d68efb8f73f/dataset.py#L327 # noqa: E501
        nocs_map[:, :, 2] = 1 - nocs_map[:, :, 2]
        return nocs_map[:, :, :3]

    def _estimate_object(self, color_path: str, mask_id: int) -> tuple:
        """Estimate pose and scale through ground truth NOCS map."""
        position = rotation_matrix = scale = out_transform = None
        depth_path = self._depth_path_from_color_path(color_path)
        depth = self._load_depth(depth_path)
        mask_path = self._mask_path_from_color_path(color_path)
        instances_mask = self._load_mask(mask_path)
        instance_mask = instances_mask == mask_id
        nocs_map_path = self._nocs_map_path_from_color_path(color_path)
        nocs_map = self._load_nocs_map(nocs_map_path)
        valid_instance_mask = instance_mask * depth != 0
        nocs_map[~valid_instance_mask] = 0
        centered_nocs_points = nocs_map[valid_instance_mask] - 0.5

        measured_points = pointset_utils.depth_to_pointcloud(
            depth, self._camera, mask=valid_instance_mask, convention="opencv"
        )

        # require at least 30 point correspondences to prevent outliers
        if len(measured_points) < 30:
            raise nocs_utils.PoseEstimationError()

        # skip object if it cointains errorneous depth
        if torch.max(depth[valid_instance_mask]) > 32.0:
            print("Erroneous depth detected.", end="\033[K\n")
            raise nocs_utils.PoseEstimationError()

        (
            position,
            rotation_matrix,
            scale,
            out_transform,
        ) = nocs_utils.estimate_similarity_transform(
            centered_nocs_points, measured_points, verbose=False
        )

        if position is None:
            raise nocs_utils.PoseEstimationError()

        return position, rotation_matrix, scale, out_transform

    def _get_scale(self, sample_data: dict, extents: torch.Tensor) -> float:
        """Return scale from stored sample data and extents."""
        if self._scale_convention == "diagonal":
            return sample_data["nocs_scale"]
        elif self._scale_convention == "max":
            return sample_data["max_extent"]
        elif self._scale_convention == "half_max":
            return 0.5 * sample_data["max_extent"]
        elif self._scale_convention == "full":
            return extents
        else:
            raise ValueError(
                f"Specified scale convention {self._scale_convnetion} not supported."
            )

    def _change_axis_convention(
        self, orientation_q: torch.Tensor, extents: torch.Tensor
    ) -> tuple:
        """Adjust up-axis for orientation and extents.

        Returns:
            Tuple of position, orienation_q and extents, with specified up-axis.
        """
        if self._remap_y_axis is None and self._remap_x_axis is None:
            return orientation_q, extents
        elif self._remap_y_axis is None or self._remap_x_axis is None:
            raise ValueError("Either both or none of remap_{y,x}_axis have to be None.")

        rotation_o2n = self._get_o2n_object_rotation_matrix()
        remapped_extents = torch.abs(torch.Tensor(rotation_o2n) @ extents)

        # quaternion so far: original -> camera
        # we want a quaternion: new -> camera
        rotation_n2o = rotation_o2n.T

        quaternion_n2o = torch.from_numpy(Rotation.from_matrix(rotation_n2o).as_quat())

        remapped_orientation_q = quaternion_utils.quaternion_multiply(
            orientation_q, quaternion_n2o
        )  # new -> original -> camera

        return remapped_orientation_q, remapped_extents

    def _get_o2n_object_rotation_matrix(self) -> np.ndarray:
        """Compute rotation matrix which rotates original to new object coordinates."""
        rotation_o2n = np.zeros((3, 3))  # original to new object convention
        if self._remap_y_axis == "x":
            rotation_o2n[0, 1] = 1
        elif self._remap_y_axis == "-x":
            rotation_o2n[0, 1] = -1
        elif self._remap_y_axis == "y":
            rotation_o2n[1, 1] = 1
        elif self._remap_y_axis == "-y":
            rotation_o2n[1, 1] = -1
        elif self._remap_y_axis == "z":
            rotation_o2n[2, 1] = 1
        elif self._remap_y_axis == "-z":
            rotation_o2n[2, 1] = -1
        else:
            raise ValueError("Unsupported remap_y_axis {self._remap_y_axis}")

        if self._remap_x_axis == "x":
            rotation_o2n[0, 0] = 1
        elif self._remap_x_axis == "-x":
            rotation_o2n[0, 0] = -1
        elif self._remap_x_axis == "y":
            rotation_o2n[1, 0] = 1
        elif self._remap_x_axis == "-y":
            rotation_o2n[1, 0] = -1
        elif self._remap_x_axis == "z":
            rotation_o2n[2, 0] = 1
        elif self._remap_x_axis == "-z":
            rotation_o2n[2, 0] = -1
        else:
            raise ValueError("Unsupported remap_x_axis {self._remap_x_axis}")

        # infer last column
        rotation_o2n[:, 2] = 1 - np.abs(np.sum(rotation_o2n, 1))  # rows must sum to +-1
        rotation_o2n[:, 2] *= np.linalg.det(rotation_o2n)  # make special orthogonal
        if np.linalg.det(rotation_o2n) != 1.0:  # check if special orthogonal
            raise ValueError("Unsupported combination of remap_{y,x}_axis. det != 1")
        return rotation_o2n

    def _quat_to_orientation_repr(self, quaternion: torch.Tensor) -> torch.Tensor:
        """Convert quaternion to selected orientation representation.

        Args:
            quaternion:
                The quaternion to convert, scalar-last, shape (4,).

        Returns:
            The same orientation as represented by the quaternion in the chosen
            orientation representation.
        """
        if self._orientation_repr == "quaternion":
            return quaternion
        else:
            raise NotImplementedError(
                f"Orientation representation {self._orientation_repr} is not supported."
            )

    def load_mesh(self, object_path: str) -> o3d.geometry.TriangleMesh:
        """Load an object mesh and adjust its object frame convention."""
        mesh = o3d.io.read_triangle_mesh(object_path)
        if self._remap_y_axis is None and self._remap_x_axis is None:
            return mesh
        elif self._remap_y_axis is None or self._remap_x_axis is None:
            raise ValueError("Either both or none of remap_{y,x}_axis have to be None.")

        rotation_o2n = self._get_o2n_object_rotation_matrix()
        mesh.rotate(
            rotation_o2n,
            center=np.array([0.0, 0.0, 0.0])[:, None],
        )
        return mesh

Config

Bases: TypedDict

Configuration dictionary for NOCSDataset.

ATTRIBUTE DESCRIPTION
root_dir

See NOCSDataset docstring.

TYPE: str

split

The dataset split. The following strings are supported: "camera_train": 275000 images, synthetic objects + real background "camera_val": 25000 images, synthetic objects + real background "real_train": 4300 images in 7 scenes, real "real_test": 2750 images in 6 scenes, real

TYPE: str

mask_pointcloud

Whether the returned pointcloud will be masked.

TYPE: bool

normalize_pointcloud

Whether the returned pointcloud and position will be normalized, such that pointcloud centroid is at the origin.

TYPE: bool

scale_convention

Which scale is returned. The following strings are supported: "diagonal": Length of bounding box' diagonal. This is what NOCS uses. "max": Maximum side length of bounding box. "half_max": Half maximum side length of bounding box. "full": Bounding box side lengths. Shape (3,).

TYPE: str

camera_convention

Which camera convention is used for position and orientation. One of: "opengl": x right, y up, z back "opencv": x right, y down, z forward Note that this does not influence how the dataset is processed, only the returned position and quaternion.

TYPE: str

orientation_repr

Which orientation representation is used. Currently only "quaternion" supported.

TYPE: str

remap_y_axis

If not None, the NOCS y-axis will be mapped to the provided axis. Resulting coordinate system will always be right-handed. This is typically the up-axis. Note that NOCS object models are NOT aligned the same as ShapeNetV2. To get ShapeNetV2 alignment: y One of: "x", "y", "z", "-x", "-y", "-z"

TYPE: Optional[str]

remap_x_axis

If not None, the original x-axis will be mapped to the provided axis. Resulting coordinate system will always be right-handed. Note that NOCS object models are NOT aligned the same as ShapeNetV2. To get ShapeNetV2 alignment: -z One of: "x", "y", "z", "-x", "-y", "-z"

TYPE: Optional[str]

category_str

If not None, only samples from the matching category will be returned. See NOCSDataset.category_id_to_str for admissible category strings.

TYPE: Optional[str]

Source code in cpas_toolbox/datasets/nocs_dataset.py
class Config(TypedDict, total=False):
    """Configuration dictionary for NOCSDataset.

    Attributes:
        root_dir: See NOCSDataset docstring.
        split:
            The dataset split. The following strings are supported:
                "camera_train": 275000 images, synthetic objects + real background
                "camera_val": 25000 images, synthetic objects + real background
                "real_train": 4300 images in 7 scenes, real
                "real_test": 2750 images in 6 scenes, real
        mask_pointcloud: Whether the returned pointcloud will be masked.
        normalize_pointcloud:
            Whether the returned pointcloud and position will be normalized, such
            that pointcloud centroid is at the origin.
        scale_convention:
            Which scale is returned. The following strings are supported:
                "diagonal":
                    Length of bounding box' diagonal. This is what NOCS uses.
                "max": Maximum side length of bounding box.
                "half_max": Half maximum side length of bounding box.
                "full": Bounding box side lengths. Shape (3,).
        camera_convention:
            Which camera convention is used for position and orientation. One of:
                "opengl": x right, y up, z back
                "opencv": x right, y down, z forward
            Note that this does not influence how the dataset is processed, only the
            returned position and quaternion.
        orientation_repr:
            Which orientation representation is used. Currently only "quaternion"
            supported.
        remap_y_axis:
            If not None, the NOCS y-axis will be mapped to the provided axis.
            Resulting coordinate system will always be right-handed.
            This is typically the up-axis.
            Note that NOCS object models are NOT aligned the same as ShapeNetV2.
            To get ShapeNetV2 alignment: y
            One of: "x", "y", "z", "-x", "-y", "-z"
        remap_x_axis:
            If not None, the original x-axis will be mapped to the provided axis.
            Resulting coordinate system will always be right-handed.
            Note that NOCS object models are NOT aligned the same as ShapeNetV2.
            To get ShapeNetV2 alignment: -z
            One of: "x", "y", "z", "-x", "-y", "-z"
        category_str:
            If not None, only samples from the matching category will be returned.
            See NOCSDataset.category_id_to_str for admissible category strings.
    """

    root_dir: str
    split: str
    mask_pointcloud: bool
    normalize_pointcloud: bool
    scale_convention: str
    camera_convention: str
    orientation_repr: str
    remap_y_axis: Optional[str]
    remap_x_axis: Optional[str]
    category_str: Optional[str]

__init__

__init__(config: Config) -> None

Initialize the dataset.

PARAMETER DESCRIPTION
config

Configuration dictionary of dataset. Provided dictionary will be merged with default_dict. See NOCSDataset.Config for supported keys.

TYPE: Config

Source code in cpas_toolbox/datasets/nocs_dataset.py
def __init__(
    self,
    config: Config,
) -> None:
    """Initialize the dataset.

    Args:
        config:
            Configuration dictionary of dataset. Provided dictionary will be merged
            with default_dict. See NOCSDataset.Config for supported keys.
    """
    config = yoco.load_config(config, current_dict=NOCSDataset.default_config)
    self._root_dir_path = utils.resolve_path(config["root_dir"])
    self._split = config["split"]
    self._check_dirs()
    self._camera_convention = config["camera_convention"]
    self._camera = self._get_split_camera()
    self._preprocess_path = os.path.join(
        self._root_dir_path, "cpas_toolbox", self._split
    )
    if not os.path.isdir(self._preprocess_path):
        self._preprocess_dataset()
    self._mask_pointcloud = config["mask_pointcloud"]
    self._normalize_pointcloud = config["normalize_pointcloud"]
    self._scale_convention = config["scale_convention"]
    self._sample_files = self._get_sample_files(config["category_str"])
    self._remap_y_axis = config["remap_y_axis"]
    self._remap_x_axis = config["remap_x_axis"]
    self._orientation_repr = config["orientation_repr"]

__len__

__len__() -> int

Return number of sample in dataset.

Source code in cpas_toolbox/datasets/nocs_dataset.py
def __len__(self) -> int:
    """Return number of sample in dataset."""
    return len(self._sample_files)

__getitem__

__getitem__(idx: int) -> dict

Return a sample of the dataset.

PARAMETER DESCRIPTION
idx

Index of the instance.

TYPE: int

RETURNS DESCRIPTION
dict

Sample containing the following items: "color" "depth" "mask" "pointset" "position" "orientation" "quaternion" "scale" "color_path"

Source code in cpas_toolbox/datasets/nocs_dataset.py
def __getitem__(self, idx: int) -> dict:
    """Return a sample of the dataset.

    Args:
        idx: Index of the instance.

    Returns:
        Sample containing the following items:
            "color"
            "depth"
            "mask"
            "pointset"
            "position"
            "orientation"
            "quaternion"
            "scale"
            "color_path"
    """
    sample_file = self._sample_files[idx]
    sample_data = pickle.load(open(sample_file, "rb"))
    sample = self._sample_from_sample_data(sample_data)
    return sample

load_mesh

load_mesh(object_path: str) -> o3d.geometry.TriangleMesh

Load an object mesh and adjust its object frame convention.

Source code in cpas_toolbox/datasets/nocs_dataset.py
def load_mesh(self, object_path: str) -> o3d.geometry.TriangleMesh:
    """Load an object mesh and adjust its object frame convention."""
    mesh = o3d.io.read_triangle_mesh(object_path)
    if self._remap_y_axis is None and self._remap_x_axis is None:
        return mesh
    elif self._remap_y_axis is None or self._remap_x_axis is None:
        raise ValueError("Either both or none of remap_{y,x}_axis have to be None.")

    rotation_o2n = self._get_o2n_object_rotation_matrix()
    mesh.rotate(
        rotation_o2n,
        center=np.array([0.0, 0.0, 0.0])[:, None],
    )
    return mesh

ObjectError

Bases: Exception

Error if something with the mesh is wrong.

Source code in cpas_toolbox/datasets/nocs_dataset.py
class ObjectError(Exception):
    """Error if something with the mesh is wrong."""

    pass