sdfest.py
cpas_toolbox.cpas_methods.sdfest ¶
This module defines SDFEst interface.
Method is described in SDFEst: Categorical Pose and Shape Estimation of Objects From RGB-D Using Signed Distance Fields, Bruns, 2022.
Implementation based on https://github.com/roym899/sdfest/
SDFEst ¶
Bases: CPASMethod
Wrapper class for SDFEst.
Source code in cpas_toolbox/cpas_methods/sdfest.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
Config ¶
Bases: TypedDict
Configuration dictionary for SDFEst.
All keys supported by SDFPipeline are supported and will overwrite config contained in sdfest_... files. The keys specified here are used by this script only.
The two keys sdfest_..._config_files will be parsed with SDFEst install directory as part of the search paths. This allows to use the default config that comes with SDFEst installation.
ATTRIBUTE | DESCRIPTION |
---|---|
sdfest_default_config_file |
Default configuration file loaded first.
|
sdfest_category_config_files |
Per-category configuration file loaded second.
|
device |
Device used for computation.
|
num_points |
Numbner of points extracted from mesh.
|
prior |
Prior distribution to modify orientation distribution.
|
visualize_optimization |
Whether to show additional optimization visualization.
|
Source code in cpas_toolbox/cpas_methods/sdfest.py
__init__ ¶
Initialize and load SDFEst models.
Configuration loaded in following order sdfest_default_config_file -> sdfest_category_config_files -> all other keys I.e., keys specified directly will take precedence over keys specified in default file.
Source code in cpas_toolbox/cpas_methods/sdfest.py
inference ¶
inference(
color_image: torch.Tensor,
depth_image: torch.Tensor,
instance_mask: torch.Tensor,
category_str: str,
) -> PredictionDict
See CPASMethod.inference.