
SDF-based RGB-D Camera Tracking in Neural Scene Representations

Leonard Bruns1 and Fereidoon Zangeneh1,2 and Patric Jensfelt1

Abstract— We consider the problem of tracking the 6D pose
of a moving RGB-D camera in a neural scene representation.
Different such representations have recently emerged, and we
investigate the suitability of them for the task of camera
tracking. In particular, we propose to track an RGB-D camera
using a signed distance field-based representation and show
that compared to density-based representations, tracking can be
sped up, which enables more robust and accurate pose estimates
when computation time is limited.

I. INTRODUCTION

Recently, neural scene representations have been shown
to possess promising characteristics for creating dense re-
constructions of environments [1], [2], [3]. The continuous
map stored in the weights of these coordinate-based networks
can densely represent environments through quantities such
as radiance fields [1], occupancy probability [4], [5], and
signed-distance fields (SDFs) [6], [2], [7], [8].

To map an environment with a neural scene representation
using a camera with unknown trajectory, camera tracking is
necessary [9], [10]. Camera tracking can be done by direct
comparison of observations and renders of the mapped scene.
Rendering of views is typically done via volume rendering,
which involves densely querying the viewing frustum. This
requires many samples and is, therefore, time consuming.

In this paper, we investigate whether recently proposed
SDF-based neural scene representations [2], [7] can be
used for more efficient tracking when paired with RGB-D
cameras compared to volume rendering-based tracking, such
as in iMAP [10]. We propose a novel tracking scheme that
estimates the camera pose by directly querying the observed
surface points and minimizing the returned distances. This
obviates the need for volume rendering, increasing the time
budget that instead can be used for incorporating more of
the observations.

A. Problem Definition

Given an initial camera pose Tw
0 c and a stream of RGB-

D images (Ii ∈ RH×W×3,Di ∈ RH×W), i = 1, ...,M we
want to find estimates T̃w

i c of the true camera poses Tw
i c.

We assume a known static environment that has previously
been encoded in a neural scene representation.

1The authors are with the Division of Robotics, Perception and Learn-
ing (RPL), KTH Royal Institute of Technology, Stockholm, Sweden
{leonardb,fzk,patric}@kth.se.

2 Fereidoon Zangeneh is also with Univrses AB.

Fig. 1. True () and tracked () camera trajectory and signed distance
field used for tracking. The mesh was extracted from the zero-isosurface of
the signed distance field.

II. METHOD

A. Scene Representations

We consider two neural scene representations: iMAP [10]
and NeuS [2]. We denote their respective networks by

fiMAP : R3 → R3 × R and fNeuS :R3 → R3 × R
x 7→ (c, σ) x 7→ (c, d),

(1)

where c denotes color, σ density, and d the signed distance
to the closest surface.

B. Camera Tracking

1) Density-based Rendering: In density-based represen-
tations (such as iMAP or NeRF), the camera pose can
be optimized by rendering the color and depth image at
the previous estimate and formulating a loss by comparing
the rendered and observed color and depth images. This
has previously been demonstrated by iNeRF [11] for RGB
data only and with RGB-D data by iMAP [10]. Due to
the expensive nature of volume rendering, both of these
methods only render a small subset of pixels to reduce the
computation time. We use volume rendering as described in
iMAP as our baseline.

2) SDF-based Optimization: Under ideal conditions, all
the observed depth points originate from surfaces in the
environment. Therefore, these points should fall onto zero
crossings of the SDF. We propose to exploit this synergy
between RGB-D cameras and SDFs by directly querying the
scene representation at the points from the RGB-D point
cloud after transforming it into the world frame using the
previous pose estimate. Instead of defining a loss based on
the render differences, we formulate the loss based on the
query points’ colors and signed distances.

TABLE I
ROOT-MEAN-SQUARE AVERAGE TRAJECTORY ERROR (IN m) ON THE NEURAL RGB-D DATASET BY [3] (> 0.2m, BETTER).

Breakfast Compl.
Kitchen

Green
Room

Grey-
white Kitchen Morning

Apart. Staircase Thin
Geo.

White-
room

r = 10Hz
iMAP with VR 1.575 2.171 0.702 0.156 2.196 0.107 3.582 0.312 2.744
NeuS with SDF 0.096 0.118 0.215 0.255 0.110 0.114 0.052 0.031 0.067

r = 5Hz
iMAP with VR 0.082 0.105 0.048 0.032 1.313 0.027 3.868 0.035 0.080
NeuS with SDF 0.043 0.049 0.100 0.072 0.044 0.073 0.045 0.017 0.022

r = 2Hz
iMAP with VR 0.021 0.020 0.015 0.077 0.077 0.007 3.987 0.012 0.022
NeuS with SDF 0.038 0.038 0.067 0.043 1.148 0.067 0.044 0.014 0.015

TABLE II
AVERAGE NUMBER OF OPTIMIZATION STEPS UNDER VARYING TIME

CONSTRAINTS AND NUMBERS OF PIXEL SAMPLES n.

n 50ms 100ms 500ms

VR
128 3.2 6.6 36.2
512 3.2 6.8 36.1
1024 2.2 5.0 27.0

SDF
2048 7 15 77
4096 7.1 15.3 79.3
16384 5.6 12.7 65.8

Specifically, we sample n points from the current RGB-
D image (Ii,Di) and compute the colored point set Pc i =
{(pc k ∈ R3, ck ∈ R3)|k = 1, ..., n} in the camera frame.
We then optimize the loss

l = λSDF
1

n

n∑
k=1

|d̃k|+ λcolor
1

3n

n∑
k=1

∥c̃k − ck∥1, (2)

where (c̃k, d̃k) = fNeuS(T̃w
i c pc k), and λSDF and λcolor are

fixed hyperparameters. Similarly to iMAP, we sample a new
set of n points for every optimization iteration.

Note that the same optimization is not applicable to
density-based representations, which typically converge to
very sharp boundaries without smooth spatial gradients that
could guide the optimization (see Fig. 1 for an example of
a learned SDF). Furthermore, the isosurface on which the
depth points lie is undefined. Similarly, occupancy fields [4],
despite having a well-defined isosurface at 0.5, converge to
very sharp transitions under ideal training conditions.

III. EXPERIMENTS

1) Implementation Details: We use the same network
architecture as iMAP for both methods. NeuS contains a
single additional trainable parameter for the standard devi-
ation of the s-density [2]. Both methods are implemented
in PyTorch. We parametrize the camera pose as a position
t̃w
i c ∈ R3 and unit quaternion q̃w

i c ∈ H1 (we renormalize
after every optimization step). We use Adam optimizer [12]
with learning rates 5× 10−4 and 1× 10−3 for position and
orientation, respectively.

2) Evaluation Protocol: We report the root-mean-square
of the absolute trajectory error (ATE)

ATE =

√√√√ 1

M

M∑
i=1

∥ t̃w
i c − tw

i c∥22, (3)

where t̃w
i c and tw

i c denote the translation part of T̃w
i c

and Tw
i c, respectively. We initialize the tracking using the

ground-truth starting pose Tw
0 c and process every frame in

the sequence with a fixed tracking rate r (i.e., we do not force
a certain playback frame rate or drop frames due to too slow
tracking). For each frame, we estimate the average time per
optimization iteration and continue to the next frame if the
remaining time budget is not sufficient for another iteration.

3) Results: We report results on the sequences of the
dataset by [3] in Table I. NeuS with SDF refers to our
proposed SDF-based tracking and iMAP with VR refers to
iMAP with volume rendering as described in [10].

We can see that our proposed SDF-based loss fails less
frequently when tracking at faster frame rates. The results
for r = 2Hz indicate that volume rendering achieves lower
ATE when sufficient optimization time is available. We
hypothesize that tracking using volume rendering might be
more accurate here, since the underlying representation was
trained via volume rendering as well. By contrast, our SDF-
based tracking loss differs significantly from the training time
loss.

In Table II we further show the number of iterations for
different time budgets and number of samples n. Note that
because our SDF-based tracking does not rely on expensive
volume rendering, we can incorporate more of the available
sensor data into each optimization step.

IV. CONCLUSION

Our experiments confirm that an SDF-based representation
can be used to more efficiently track an RGB-D camera
inside a neural scene representation. This comes at the cost of
a more involved mapping task, which in our case involved the
eikonal term [13], which requires the computation of second-
order gradients and therefore slows down training roughly by
a factor of two. In the future we want to investigate whether
the SDF loss can similarly be used to speed up mapping
by giving direct supervision to the isosurface in combination
with volume rendering.

ACKNOWLEDGMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “NeRF: Representing scenes as neural radiance fields
for view synthesis,” in Proceedings of the European Conference on
Computer Vision. Springer, 2020, pp. 405–421.

[2] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS:
Learning neural implicit surfaces by volume rendering for multi-view
reconstruction,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[3] D. Azinović, R. Martin-Brualla, D. B. Goldman, M. Nießner, and
J. Thies, “Neural RGB-D surface reconstruction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

[4] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3D reconstruction in function space,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4460–4470.

[5] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald,
and M. Pollefeys, “NICE-SLAM: Neural implicit scalable encoding
for SLAM,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[6] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape
representation,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 165–174.

[7] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume rendering of
neural implicit surfaces,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[8] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and
M. Mukadam, “iSDF: Real-time neural signed distance fields for robot
perception,” arXiv preprint arXiv:2204.02296, 2022.

[9] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A. Prisacariu, “NeRF–
: Neural radiance fields without known camera parameters,” arXiv
preprint arXiv:2102.07064, 2021.

[10] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “iMAP: Implicit mapping
and positioning in real-time,” in Proceedings of the International
Conference on Computer Vision, 2021, pp. 6229–6238.

[11] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-
Y. Lin, “iNeRF: Inverting neural radiance fields for pose estimation,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2021, pp. 1323–1330.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the International Conference on Learning
Representations, 2015.

[13] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit
geometric regularization for learning shapes,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp. 3789–3799.

	Introduction
	Problem Definition

	Method
	Scene Representations
	Camera Tracking
	Density-based Rendering
	SDF-based Optimization

	Experiments
	Implementation Details
	Evaluation Protocol
	Results

	Conclusion
	References

