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Abstract— Rich geometric understanding of the world is
an important component of many robotic applications such
as planning and manipulation. In this paper, we present a
modular pipeline for pose and shape estimation of objects
from RGB-D images given their category. The core of our
method is a generative shape model, which we integrate with
a novel initialization network and a differentiable renderer to
enable 6D pose and shape estimation from a single or multiple
views. We investigate the use of discretized signed distance
fields as an efficient shape representation for fast analysis-
by-synthesis optimization. Our modular framework enables
multi-view optimization and extensibility. We demonstrate the
benefits of our approach over state-of-the-art methods in several
experiments on both synthetic and real data. We open-source
our approach at https://github.com/roym899/sdfest.

I. INTRODUCTION

We investigate the problem of joint pose and shape estima-
tion of objects from RGB-D data. Pose estimation of known
objects [1] and shape modeling of aligned objects [2], [3]
have made significant progress in recent years, but the joint
task has received less attention so far [4], [5]. Assuming
knowledge of the full 3D model and pose of an object is
common in various classic robotic algorithms, such as motion
planning and grasp computation, but is not easy to achieve
from partial sensor information. Furthermore, pose and shape
estimation at a category level could be used in a mapping
context to create an object-based world representation [6].
Such object-based representations could, for example, enable
interaction with objects in virtual or augmented reality when
only partial sensor information is available.

Methods inferring image-based abstractions, such as clas-
sified bounding boxes and instance masks, have made re-
markable progress in recent years due to the availability of
large annotated datasets [7]. However, using such abstrac-
tions in a robotics context remains challenging. To bridge
this gap from image-based abstractions to an actionable
representation, we build on this progress by using a classified
instance mask as the starting point to extract a cropped point
set of the object of interest with the goal of subsequently
estimating the full 3D shape and pose.

Our work is inspired by the remarkable ability of humans
to estimate the full shape of most objects from only a single
view. This enables humans to grasp many objects without
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Fig. 1. Single-view pose and shape estimation results for two objects
obtained with SDFEst (left: front view, right: alternative view).

knowledge of the full shape or to plan more complicated
tasks such as stacking. We hypothesize that this ability
stems from integrating the prior knowledge accumulated
from having seen many instances of an object category and
the partial observation of the novel instance.

In this work, we model this intuition as a per-category
generative object model. This generative model is trained to
compress the shape variations of an object category in a low-
dimensional representation. To then estimate pose and shape
from partial sensor information, we propose to train a point-
based network on synthetic data generated by the generative
object model. We further refine this initial estimate using a
differentiable renderer to better match the observations from
a single or multiple views.

We present a modular architecture for single- and multi-
view pose and shape estimation of objects from a known
category. Our approach, SDFEst, only requires a collection of
categorized and aligned meshes at training time and estimates
the 6D pose and shape of an object at inference time
(see Fig. 1). Compared to purely discriminative approaches,
SDFEst is modular in nature and allows optimizing the
object’s pose and shape from a single or multiple views by
integrating a generative shape model with a differentiable
renderer. Contrary to most existing approaches that use point
sets, we use signed distance fields to represent shapes.

https://github.com/roym899/sdfest


To summarize, our contributions are:
• a novel extensible modular architecture for categorical

pose and shape estimation from a single or multiple
RGB-D images,

• a novel parametrization for multimodal orientation dis-
tributions, and

• an open-source implementation for pose and shape esti-
mation using discretized signed distance fields (SDFs).

We compare our method to other related categorical pose and
shape estimation methods and find that our method achieves
state-of-the-art performance when poses are constrained and
outperforms existing methods on unconstrained poses.

II. RELATED WORK

We will summarize work of three related areas: RGB-
based shape estimation, categorical pose and shape estima-
tion, and optimizable shape and pose estimation.

A. RGB-based Shape Estimation

Several methods have been proposed to estimate the shape
of an object from a single [8]–[13] or multiple RGB images
[14], [15]. See Han et al. [16] for a recent survey on image-
based 3D reconstruction.

In many cases, pose is not modeled explicitly and instead
only the shape is predicted [8], [10], [14]. Although such
an approach in principle can learn entangled representations
of pose and shape, Zhu et al. [17] showed that explicitly
modeling pose and predict shapes in a canonical reference
frame reduces the learning complexity significantly and
further allows finetuning of the pose estimation on real-world
silhouette annotations.

Engelmann et al. [18] address the single RGB view multi-
object case with a single-shot architecture. They frame the
shape estimation problem as classification of the best match-
ing shape. This allows them to decouple the shape estimation
from the shape representation, but limits deformations to
scalings of shapes in the database. Principled fusion of
multiple such single-view predictions remains challenging.

In this work, we explicitly decouple pose, scale, and shape.
We predict the shape in a canonical reference frame, which
can be used to simplify downstream tasks such as grasp
computation (e.g., grasping a mug from the top at the rim).

B. Categorical Pose and Shape Estimation

While pose estimation of known objects has matured
significantly [1], pose estimation on a per-category level has
only recently received more attention.

To estimate pose on a per-category level, [19] proposed the
normalized object coordinate space (NOCS). In this space,
objects of one category are aligned in a unit cube. To estimate
the object pose, the projected NOCS coordinates (also called
NOCS map) are predicted from the RGB image. This NOCS
map and the observed depth map can be considered as cor-
respondences, which together with the Umeyama algorithm
[20] and RANSAC can be used to robustly estimate 6D
pose and scale of the object. As part of their contribution,
the authors also published the synthetic CAMERA dataset

and the real-world REAL275 dataset. The latter being the
most common dataset to evaluate categorical object pose
estimation.

Building on these datasets proposed by [19], several
methods were introduced to also address the categorical
pose estimation problem. [21] proposed canonical shape
space (CASS), which directly regresses a rotation matrix
and translation vector from the observed point set and as
a by-product also reconstructs the full point set. Shape prior
deformation (SPD) [5] follows a similar idea but instead pre-
dicts deformations of a canonical point set for each category.
To estimate the pose, they also use the NOCS. [22] and [23]
extend SPD with a recurrent architecture and a transformer
architecture for better shape adaptation, respectively. All
of these methods train on a mix of mixed-reality images
from the CAMERA dataset and real images from the REAL
dataset. In contrast, the recently proposed ASM-Net [24] also
estimates pose and shape, but showed that competitive results
can be obtained by training on synthetic renderings of meshes
only. Similar to ASM-Net, we also only require a collection
of meshes for training.

Most methods (including ours) employ two-stage pipelines
in which an object detection or instance segmentation module
first detects bounding boxes or masks, which are later used
to estimate the object’s pose and shape. In contrast, Irshad et
al. [25] proposed to use a single-shot architecture to detect
objects and estimate their shape and pose jointly. While
such an end-to-end approach might be easier to scale, data
collection and data generation becomes more challenging
compared to two-stage approaches, which can benefit from
large-scale segmentation datasets.

In prior work [26], we showed that existing methods
do not generalize well to unconstrained orientations due
to the constrained orientations present in the CAMERA
and REAL datasets. In this work, we propose a method
that can achieve competitive results without constraining
the orientation and outperforms existing approaches when
constraining orientations to those included in the training
set.

C. Optimizable Pose and Shape Estimation

Fewer works have investigated how to iteratively optimize
the pose and shape given one or multiple observations. The
approaches mentioned in the previous section are typically
discriminative models, making it difficult to integrate ad-
ditional information in a principled way. In contrast, the
methods discussed in this section integrate a generative
model into the estimation, which allows one to incorporate
additional information by optimizing a latent representation,
such that it matches one or multiple observations better.

FroDO [28] is a framework for pose and shape estimation
of objects from bounding box detections in multiple views.
The approach uses keypoints tracked over multiple RGB
frames to formulate a loss that refines the shape descriptor.
Most notably, FroDO employs DeepSDF [2], a continuous
SDF representation, to represent the shape. MOLTR [29] is
another RGB-based approach that also uses DeepSDF as the
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Fig. 2. Pipeline of SDFEst. We first apply instance segmentation and feed the masked point set into a PointNet-like network [27] which predicts the
pose zpose, scale zscale, and latent shape descriptor zshape. The decoder decodes zshape into a discretized signed distance field (SDF) ṼSDF containing
the full object shape in canonical pose. Given the pose, scale, and SDF, we render the depth map and iteratively optimize the latent representation by
minimizing a loss L between the rendered depth map D̃ and measured depth map D.

shape representation. MOLTR focuses on multi-object track-
ing, and instead of optimizing the shape descriptor through a
loss, they fuse multiple single-view shape estimates through
averaging. Compared to these works, we use discretized
SDFs to represent shape and perform dense optimization on
RGB-D data using a differentiable renderer.

Chen et al. [4] proposed an analysis-by-synthesis frame-
work for pose and shape estimation of unknown objects.
Based on a single RGB image, their approach samples and
optimizes a large number of randomly sampled candidate
poses to find the best matching candidate. Their approach
does not allow direct extraction of the geometry; instead,
novel views can be generated by their generative model. On
the contrary, our method predicts an SDF, scale, and 6D pose,
which can be used directly for geometric operations, such as
collision checking or grasp planning.

In concurrent work, Deng et al. [30] introduced iCaps
which, similar to our method, iteratively optimizes pose and
shape from an initial estimate. Like FroDO and MOLTR,
iCaps uses DeepSDF [2] to represent shapes. Instead, we
investigate the use of discretized SDFs, which promises
faster shape reconstruction and allow faster differentiable
rendering, as shown in Section V-D. For faster optimization,
iCaps alternates between pose refinement and discriminative
shape estimation given a pose. In contrast, our approach
jointly optimizes pose and shape. Furthermore, due to
iCaps’ discriminative shape estimation, incorporating
additional observations requires modifying the approach,
while our gradient-based joint optimization directly supports
incorporation of additional observations.

Our pipeline is inspired by NodeSLAM [6], which em-
ploys a variational autoencoder (VAE) to model objects in a
SLAM (simultaneous localization and mapping) framework.
This VAE generates a discretized occupancy grid from a
latent shape descriptor, which can be iteratively optimized
using a probabilistic differentiable renderer. Orientation es-
timation in [6] is limited to a single axis by assuming
objects to be upright on a table plane. Our work follows
a similar idea to represent and optimize the object shape,
but focuses on single-object, unconstrained, and possibly
ambiguous object pose estimation.

III. PROBLEM DEFINITION

We study the problem of estimating 6D pose and shape
at a per-category level. More formally, given an image
I ∈ RH×W×3, depth map D ∈ RH×W , object mask
M ⊆ {(i, j) ∈ N2 | i ≤ H, j ≤ W}, and category c ∈ N we
try to find estimates T̃w

o and Õ of the true pose Tw
o and

shape O, respectively. We denote by o the object frame, by
w the world frame, and by c the camera frame. We assume
camera pose(s) Tw

c to be known. Given the availability of
depth maps, we consider metrically scaled shapes.

IV. METHOD

In this section, we will first describe the overall pipeline
(Section IV-A) and subsequently describe and motivate the
design of the individual components (Section IV-B to IV-D).
After introducing the components, we detail the inference
step in Section IV-E. Finally, we provide further details of
the training process in Section IV-F.

A. Pipeline Overview

Fig. 2 shows an overview of our proposed pipeline. The
three main components are (from left to right) an initial-
ization network (Section IV-C), a generative shape model
(Section IV-B), and a differentiable renderer (Section IV-D).
Together, these components enable initialization and iterative
optimization of pose and shape in an analysis-by-synthesis
framework (Section IV-E).

Our method, SDFEst, takes a cropped point set P ⊂ R3

of the object as input1, which we generate from the mask
M, depth map D, and the camera projection matrix P. The
first part of our method is a novel initialization network,
which estimates an initial pose and shape. The shape is
predicted as a latent shape descriptor in a low-dimensional
shape space learned by a VAE and a separate scalar scaling
factor. This initialization gives a coarse estimate which is
subsequently refined in an analysis-by-synthesis fashion. To
do so, we use the decoder of our VAE to decode the latent
shape descriptor into a discretized SDF, render it with a

1To simplify usage of our pipeline, we also integrate our method with
Mask R-CNN [31] from Detectron2 [32] to enable inference starting from
an RGB image I and depth map D.



differentiable renderer, compare it with one or more observed
depth maps, and compute an optimizable loss to iteratively
refine the latent variables.

The embedded generative model is trained with complete
shapes, not partial views. Therefore, it decodes the latent
shape descriptor, which is inferred from a partial view, to
the full reconstructed shape. That is, the pipeline finds the
pose, scale, and normalized shape that best matches the
observation.

B. Shape Modeling
To model per-category shape, we employ a VAE to

find a low-dimensional, smooth representation of an object
category’s shape. The idea is that the VAE constrains the
reconstructions to valid shapes from a category and hence
automatically completes partial observations when fitting
pose and shape to the observations. To represent the shape,
we use discretized SDFs which can be easily converted to a
mesh using the marching cubes algorithm [33].

We follow common practice for training VAEs [34] and
jointly train an encoder

fenc : RR×R×R → RN × RN
>0

VSDF 7→ (µ,λ)
(1)

and a decoder
fdec : RN → RR×R×R

zshape 7→ ṼSDF.
(2)

Given a discretized SDF VSDF ∈ RR×R×R of fixed res-
olution R, the encoder predicts the mean µ and variance
λ of a multivariate Gaussian N (µ,diag(λ)) with diagonal
covariance in an N -dimensional latent space. The decoder re-
constructs the SDF given a sample zshape ∼ N (µ,diag(λ))
from the latent space. During inference in the full pipeline,
only the VAE’s decoder is used.

As is standard for VAEs, we use Kullback-Leibler di-
vergence to regularize the predictions. When computing
the reconstruction error, we aim to give higher priority to
correctly capturing the surface instead of the distance in
empty space. To do so, we modify a simple reconstruction
loss in two ways.

First, following [13], we increase the weight for distances
below a threshold δ to give higher priority to correctly
capturing the surface instead of the distance in empty space.
Second, we give additional supervision to the reconstructed
surfaces by rendering a depth map of a random view of
VSDF and creating a point set P from it. Applying trilin-
ear interpolation at these points in the reconstructed SDF
ṼSDF should yield 0. Therefore, we add the sum of these
interpolations as an additional loss term.

The total loss function for training the VAE is given by

LVAE =λ<δ∥V<δ
SDF − Ṽ<δ

SDF∥
2
2

+ λ≥δ∥V≥δ
SDF − Ṽ≥δ

SDF∥
2
2

+ λSDF

∑
p∈P

|trilinear(ṼSDF,p)|2

+ λKLDDKL (N (µ,λ) ∥ N (0, I)) .

(3)

We tuned the relative importance of these loss terms by
visual inspection, such that unconditioned samples zshape ∼
N (0, I) gave good reconstructions.

C. Initialization Network

For each object category, we train an initialization network

finit : RM×3 → R3 × R× [0, 1]G × RN

P 7→ (zpos, zscale,o, zshape).
(4)

Given a point set P of variable size M (determined by the
number of depth pixels within the object mask), the network
predicts the position zpos, the scale zscale, a distribution over
orientations o, and the latent shape vector zshape.

To handle ambiguous sensor data, we use a probabilistic
orientation representation by discretizing SO(3) and pre-
dicting the probability of the orientation being inside each
grid cell. We use the base grid as specified by [35] since
it uniformly discretizes SO(3) and allows O(1) conversion
from a continuous orientation to the corresponding index.
While this introduces a discretization error, it allows the
network to represent uncertainty and arbitrary distributions
on SO(3), which is important to handle objects with any
(potentially view-dependent) symmetries using the same
framework. In Section V-C we further show that, if multiple
views are available, this probabilistic output can be used
to identify the most certain initial orientation. Specifically,
let g : SO(3) → {1, ..., G} denote the mapping from
an orientation (we use unit quaternions for zorientation) to
the index of the SO(3) grid with G cells. Furthermore,
let h denote the inverse operation. Note that in general
h(g(q)) ̸= q, since a discretization error is introduced
and unit quaternions are a double cover of SO(3). The
discretization error that this representation introduces in the
initialization of the orientation will subsequently be removed
during the optimization which operates on quaternions.

We use a PointNet-like architecture [27] and train it on
synthetic point sets generated by sampling shapes from the
VAE and randomizing their pose and scale. To avoid intro-
ducing any bias towards upright objects we use uniform dis-
tributions for position and orientation. However, we include
a prior on possible sizes of an object category by specifying
a distribution for the scale during training. We normalize the
masked point set to have zero mean before passing it to the
network. That is, the network’s position output is only the
offset from the masked point set’s mean, which we will not
denote explicitly in the following. Given such samples, we
train the initialization network in a supervised manner with
the following loss function:

Linit =λpos∥zpos − ẑpos∥22
+ λorientation(− log(og(ẑorientation)))

+ λscale(zscale − ẑscale)
2

+ λshape∥zshape − ẑshape∥22

(5)

where ·̂ indicates the sampled quantities and oi denotes the
ith element of o. Since real masks will typically not perfectly
align with the depth image, and RGB-D sensors exhibit noise



close to object edges, we augment the depth images prior to
converting to a point set. We found this step to be crucial for
usability on real-world data, where robust outlier rejection is
difficult, depending on the object’s shape and camera angle.

D. Differentiable Renderer

To enable analysis-by-synthesis optimization with the SDF
we render the depth map using a differentiable renderer. We
follow the idea of SDFDiff [36] and apply sphere tracing to
quickly find the zero crossing in the SDF and use trilinear
interpolation at the last step to compute derivatives with
respect to pose, scale, and SDF.

E. Inference

The input to our network is the masked point set P in the
camera frame, which is passed to the initialization network
to obtain an initial position zpos, discretized orientation
distribution o, scale zscale, and latent shape descriptor zshape.
The discretized orientation distribution o is converted to a
continuous unit quaternion zorientation = h (argmaxi oi).
Since we never regress the quaternion directly, we do not
suffer from the discontinuity issue discussed in [37].

Starting from this initial latent estimate, we decode the
SDF, render it at the current pose, and compute a loss based
on the observations. We combine two complementary losses,
which are visualized in Fig. 3.

The SDF loss is computed by transforming the observed
point set P into the object frame and interpolating the
discretized SDF at the observed points. Since the observed
points should lie on the object’s surface, the interpolation
should be close to 0. Therefore, we use the following loss:

LSDF =
1

|P|
∑

cp∈P
|trilinear(ṼSDF, z

−1
scale T̃o w Tw

c pc )|,

(6)
where T̃o w is the 6D transformation computed from zpose.

The depth loss is computed based on the observed depth
map D and estimated depth map D̃ as

Ldepth =
1

|D̃|

∑
(i,j)∈D̃

|D̃i,j −Di,j |, (7)

where D̃ = {(i, j) ⊆ M | Di,j ̸= 0 ∧ D̃i,j ̸= 0}, that is,
the set of pixels where both the masked depth map and the
rendered depth map are valid.

The total loss is then computed as

L = λSDFLSDF + λdepthLdepth. (8)

Since the whole pipeline is differentiable, we can use any
first-order optimization algorithm to jointly optimize pose,
scale, and shape of the object.

Our framework readily allows incorporating additional
information from multiple views by summing up the per-
view losses. Specifically, when K views and their poses
Tw

ck, k = 1, ...,K are available, we evaluate (6)-(8) to
retrieve per-view losses Lk and compute the total loss as
L =

∑K
k=1 Lk.

(a) SDF (b) Depth

Fig. 3. Losses used to optimize the pose, scale, and shape of the object. The
blue circle is the real observed object, green visualizes the current estimate,
and red visualizes the losses. Note that each loss term captures different
cases of misalignments, while neither by itself handles all.

F. Training Details

We train a separate VAE and initialization network for
each object category. Our implementation is based on Py-
Torch [38] and Open3D [39]. Both networks are trained using
Adam optimizer [40] with a learning rate of 1× 10−3.

1) VAE Training: We use CAD models from the ShapeNet
dataset [41], convert them to SDFs with a resolution of
R = 64, and manually remove erroneous CAD models
(i.e., conversion to SDF failed, CAD model is misclassified
/ contains multiple objects / etc.) prior to training. The exact
subsets are published as part of our open-source software.

To stabilize the VAE training, we set λKLD = 0 for the
first 1000 iterations of training. This helped to avoid local
minima where the encoder predicts µ ≈ 0, and the decoder
predicts only a constant (mean) value.

2) Initialization Network Training: To train the initializa-
tion network, we need to generate single-view point sets as
close as possible to the expected preprocessed real-world
point sets captured by an RGB-D camera. To do so, we
sample zshape ∼ N (0, I), that is, from the prior distribution
of the VAE. To generate random object positions, we first
uniformly sample a pixel in the image plane (we generate
640x480 depth maps) to compute the ray on which the SDF
center will be. We then sample a typical object distance along
that ray to define the 3D position of the center. Next, we
sample the scale of the SDF from per-category specified
distributions. Finally, we uniformly sample a quaternion
representing the orientation of the object. To robustify our
network to typical outliers observed for noisy masks, we ap-
ply a random affine transformation to the mask and generate
a uniform outlier value for the parts where the noisy mask
does not overlap with the rendered depth image anymore.
With a probability of 0.5, we further apply a Gaussian filter
to the previously augmented depth image. We found this
to be a simple way of simulating flying pixels at object
boundaries commonly observed with RGB-D cameras. We
train the initialization network by generating the data on the
fly.



TABLE I
REAL275 RESULTS

CASS SPD ASM iCaps Ours Ours†

10◦,2 cm 0.331 0.535 0.331 0.205 0.506 0.589
5◦,1 cm 0.073 0.205 0.069 0.030 0.224 0.242
10◦,2 cm,0.6 0.031 0.471 0.215 0.106 0.442 0.491
5◦,1 cm,0.8 0.000 0.170 0.050 0.013 0.185 0.191
†

Initialization constrained to orientations in REAL train split
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Fig. 4. Per-category estimation precision on REAL275 for varying position,
orientation and F1cm-score thresholds.

V. EXPERIMENTS

In this section, we will discuss four experiments. First,
we follow our proposed evaluation protocol of pose and
shape estimation from real single-view data [26]. Second,
we follow the evaluation protocol used by NodeSLAM [6]
to compare pose and shape estimation with multiple views.
Third, we perform an ablation study to assess the effect of the
different components. Finally, we provide a run time analysis
of our method.

Unless otherwise stated, we use the same networks (N =
8, G = 576) trained on synthetic data only and optimize for
50 iterations, which is typically sufficient for convergence.

A. Single-view Real Data

For all real-data experiments, we follow the protocol
and evaluation metrics defined in [26]. To summarize, we
report precision (i.e., # correct estimates / # total estimates)
based on varying thresholds on position, orientation, and
F1cm-score. As baselines, we use CASS [21], SPD [5],
ASM-Net [24], and iCaps [30]. For a fair comparison of
pose and shape estimation, we use the same ground-truth
masks and categories for all methods as described in [26].
In Table I and Table II we show results on REAL275
[19] and REDWOOD75 [26], [42], respectively. The green
highlighted methods have only access to synthetic data.

On REAL275 (Table I), our method performs better than
CASS, ASM-Net, and iCaps for all thresholds and on par
with SPD. We further show results where our method is
constrained to orientations present in the REAL training
data (denoted by Ours†). With this modification, our method
outperforms all other methods on REAL275, at the cost of
poorer generalization for unconstrained orientations.

To better understand these results, we show the results
of our unconstrained method for different categories and
varying thresholds in Fig. 4. We observe that for cans and

laptops the orientation precision of our method saturates at
40-60%. We find that in both cases, pose is ambiguous from
geometry alone, and since our method was trained with a
uniform orientation distribution, we cannot always infer the
correct orientation. If we constrain2 the initial orientations to
those in the REAL train split, these ambiguities disappear,
which explains the improved performance in Table I.

On REDWOOD75 (Table II), our unconstrained method
outperforms the baselines by a large margin. To analyze this,
we show a qualitative comparison for typical REDWOOD75
samples in Fig. 5. We find that other methods, which were
trained on constrained orientations, fail at estimating objects
with unconstrained orientations. Our method, on the other
hand, only uses synthetic data and, therefore, we were able
to generate unconstrained orientations during training.

TABLE II
REDWOOD75 RESULTS

CASS SPD ASM iCaps Ours

10◦,2 cm 0.013 0.200 0.307 0.270 0.653
5◦,1 cm 0.000 0.013 0.080 0.080 0.466
10◦,2 cm,0.6 0.000 0.173 0.173 0.20 0.586
5◦,1 cm,0.8 0.000 0.013 0.053 0.040 0.413

GT CASS SPD ASM-Net Ours

Fig. 5. Comparison of the estimated pose and shape on REDWOOD75
data. CASS and SPD, which are trained on datasets that only contain
upright objects, fail at estimating unconstrained orientations. The exact
training distribution of ASM-Net is unknown. Our method is trained with
uniformly distributed orientations and therefore performs significantly better
on unconstrained orientations. See Table II for quantitative results.

B. Multi-view Synthetic Data

To quantitatively compare the shape completion and pose
estimation capabilities of our approach with NodeSLAM’s
[6], without their code available, we attempt to replicate
their evaluation procedure: meshes from the ShapeNet [41]
mug category are scaled by 0.1 (making them approximately
6 cm large), 1, 2, and 3 camera orientations are uniformly
sampled and the camera positions are chosen such that the
origin of the mesh lies 30 cm in front of each camera
on its principal axis. We use Open3D [39] to render the

2We use our orientation discretization to change the prior distribution
without retraining any network.



input images. Note that some details, such as the image
resolution and camera parameters, were unknown to us, and
the experimental setup might not be completely the same.
For this experiment, we only optimize for 30 iterations
similar to NodeSLAM. Additionally, we perform 6D pose
estimation, whereas [6] only describes orientation estimation
around the object’s up-axis. We report the same metrics
as [6]: reconstruction precision P, chamfer distance CD,
thresholded reconstruction precision P1cm, and thresholded
reconstruction recall R1cm.

The comparison between our results and those reported
in [6] is shown in Table III. Our method achieves better
results on most metrics. It can be seen that both methods
successfully improve the estimates with the additional infor-
mation provided by additional views. Note that such a multi-
view optimization is not readily supported by the single-view
methods we compared with in Section V-A.

TABLE III
MULTI-VIEW COMPARISON WITH NODESLAM [6]

1 view 2 views 3 views

Ours [6] Ours [6] Ours [6]

P/mm 4.625 4.459 3.290 3.752 2.572 3.484
CD/mm 3.782 4.439 2.818 3.854 2.330 3.648
P1cm/% 86.53 − 92.80 − 96.40 −
R1cm/% 94.55 93.49 96.62 95.72 97.53 96.07

C. Ablation Study
To verify the effectiveness of different components in

our pipeline, we performed an ablation study using the 3-
view experimental setup described in Section V-B. Table IV
summarizes the results. First, instead of initializing with a
random first view, we assume that all views are available and
initialize based on the view that gives the highest probability
in the orientation distribution (best view). It can be seen that
this simple change further improves the results. Qualitatively,
we found that unambiguous views score reliably higher
than ambiguous ones, which is consistent with the improved
results. Depth loss only and SDF loss only show that none
of the losses are sufficient by themselves, which supports
the discussion in Section IV-E. We further investigate the
importance of initialization and iterative optimization. Init
only shows that skipping the optimization completely gives
significantly worse results, which is expected due to the
quantization error that is introduced due to the SO(3)
discretization. Skipping only the shape optimization (no
shape opt.) also gives worse results, but to a lesser degree.
Initializing the shape to the mean shape zshape = 0, but
optimizing it, similar to [6], also gives significantly worse
results. Finally, we compare our discretized SO(3) grid
to regressing a single quaternion and using a finer grid.
Both perform worse. For quaternions, the most likely reason
for the drop in performance is the inability of handling
multimodal distributions. The finer grid resolution converged
slower during training than the coarser one we used for our
experiments. We believe that training for a longer time might
close the performance gap.

TABLE IV
ABLATION STUDY

P/mm CD/mm P1cm/% R1cm/%

First view (G = 576) 2.776 2.439 95.56 97.55
Best view 2.586 2.290 96.43 97.96

Depth loss only 2.866 2.918 94.90 93.49
SDF loss only 3.464 2.827 94.58 97.66

Init only 8.095 6.432 67.26 87.75
No shape opt. 2.917 2.582 95.28 97.22
Mean shape init 3.066 2.612 93.75 97.14

Quaternion 3.866 3.193 90.67 96.15
Finer grid (G = 4608) 3.458 2.888 92.64 96.83

D. Run Time Analysis

In general, analysis-by-synthesis approaches impose run
time limitations on the network and components used in
the optimization loop. Here, we break down the run time
of our pipeline into its different components, namely, the
initialization network, the SDF decoder, and the differen-
tiable renderer. Table V shows the resulting run times on
a GeForce GTX 1070 Mobile when optimizing for 50 itera-
tions, which is typically sufficient for convergence (rendering
is performed at a resolution of 640×480). Our custom CUDA
implementation achieves rendering times below 6ms (for a
single forward and backward pass), which is significantly
faster than the decoding step. This indicates that the bottle-
neck in our analysis-by-synthesis pipeline is the decoding of
the latent representation into the SDF, not the differentiable
rendering. Including the decoding step, rendering a single
image takes around 30ms.

To compare with the rendering of continuous neural field
representations, DIST [43], a differentiable renderer for
continuous SDFs, requires 0.99 s to render a single 512×512
image (on a GeForce GTX 1080 Ti) despite various tricks to
improve the run time. This highlights the drawback of neural
field representations, which require thousands of evaluations
during rendering. The discretized shape representation of this
work only requires a single forward pass to render from the
latent variables.

TABLE V
RUN TIME BREAKDOWN OF THE PIPELINE

Time (ms) % of Total

Segmentation (×1) 268.23 15.50
Initialization (×1) 4.67 0.27

Decoding-Forward (×50) 46.22 2.67
Rendering-Forward (×50) 8.53 0.49

Losses (×50) 136.06 7.86
Decoding-Backward (×50) 910.98 52.63

Other-Backward (×50) 247.41 14.29

Total 1731.02

VI. LIMITATIONS

General limitations inherent to analysis-by-synthesis meth-
ods apply to our method. Although our method achieves bet-
ter results than existing discriminative methods, this improve-
ment comes at the cost of slower run time. Furthermore, the



complexity of all components included in the optimization
loop must be limited to avoid slow optimization. Therefore,
we chose to use one VAE per category to limit the network
size of the decoder.

A possible way towards real-time application would be to
use a more complex network for the initialization. This might
allow for direct inference of a higher-quality estimate and
would reduce the number of necessary optimization itera-
tions. Furthermore, iterative optimization could be performed
online with changing sensor data in a tracking fashion [30].

We observed that shape estimation is currently mostly
limited to interpolations of shapes seen in training. Gen-
eralization to novel shapes is limited. Training on more
shapes, cross-category, and other generative models might
be possible ways towards more general shape estimation.

Furthermore, our method does not take into account the
color information, and pose and shape are estimated based
on depth data only.

VII. CONCLUSION AND OUTLOOK

We presented an architecture to estimate pose and shape of
an object. The architecture can be used for single- and multi-
view estimation. Our approach is trained on unconstrained
orientations and is capable of handling ambiguous views
during training due to our SO(3) parametrization. If the
poses in an environment are known to be constrained, such
constraints can easily be incorporated into our framework.
We open-source our approach to facilitate further research
in this area.

Our modular architecture naturally lends itself to various
extensions and modifications. The differentiable renderer is
currently only used during inference and to generate a depth
map. Modifying it to render other modalities and using it
for end-to-end training with unannotated data could be an
interesting research direction. Other future directions include
multi-category models, single-stage training, and a fully
probabilistic pose (and shape) estimation framework.
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