
This work was submitted to the Chair of Navigation

Master’s Thesis

Deterministic Sampling-Based

Motion Planning

Leonard Bruns

330549

September 26, 2019

Supervisors: Dr. rer. nat. Luigi Palmieri (Robert Bosch GmbH)
M.Sc. Marius Brachvogel (RWTH Aachen)

Examiner: Univ.-Prof. Dr.-Ing. habil. Michael Meurer

I assure, that this work – with the exception of the official supervision by the chair
and by my supervisor at Robert Bosch GmbH – was carried out by me without
external help. The used literature is completely indicated in the bibliography.

Renningen, September 26, 2019

(Leonard Bruns)

Abstract

A key challenge in robotics is the efficient generation of optimal robot motion
with safety guarantees in cluttered environments. Recently, deterministic optimal
sampling-based motion planners have been shown to achieve good performance to-
wards this end, in particular in terms of planning efficiency, final solution cost, qual-
ity guarantees as well as non-probabilistic completeness. Yet their application is still
limited to relatively simple systems (i.e., linear, holonomic, Euclidean state spaces).
In this work, we extend this technique to the class of symmetric and optimal driftless
systems by introducing an optimization technique for precomputing sets with known
and optimized dispersion, aware of differential constraints, for sampling-based robot
motion planning. We prove that the approach gives the same asymptotic dispersion
as state-of-the-art low-dispersion sequences, and show through multiple experiments
that it outperforms all baselines in practice. Another approach to differentially con-
strained, deterministic sampling-based motion planning is state lattice planning.
While shown to be a computationally efficient choice in the past, the completeness
guarantees that such planners give have not been formally discussed in the litera-
ture so far. We use the same reachable set-based framework to derive interpretable
completeness guarantees for both PRM and state lattice planners for all symmetric
and optimal systems. Additionally, based on this analysis, we propose an algorithm
for generating a set of motion primitives with proven completeness guarantees.

iv

List of Symbols

General notation

a Scalar

a Vector

ai Vector element

A Matrix or tensor

Ai,j Matrix or tensor element

A Set

aspecification Variable with description (note the difference to indices)

Common variables

c Cost

σ Path

X Configuration space

x Configuration

U Control space

u Control

D Dimension of the configuration space

d, d̃ Dispersion and modified dispersion

n Number of samples

S Set of samples

P Set of motion primitives

V Set of vertices

E Set of edges

v

Contents

1 Introduction 1

2 Fundamentals 3

2.1 Motion Planning . 3
2.2 Sampling-Based Motion Planning . 7
2.3 Planning under Differential Constraints 11

2.3.1 Car-like kinematics . 13
2.4 Sampling-Based Planning Algorithms 15

2.4.1 Probabilistic roadmap . 15
2.4.2 Fast marching tree . 18
2.4.3 State lattice-based approaches 21
2.4.4 Other algorithms . 22

2.5 Sampling Theory . 25
2.5.1 Dispersion . 25
2.5.2 Discrepancy . 26
2.5.3 Sampling sequences . 28
2.5.4 Sampling in motion planning 29

3 Related Work 31

3.1 Deterministic Sampling for Motion Planning 32
3.2 State Lattice-Based Approaches . 36
3.3 Steering Functions . 38

4 Method 39

4.1 Differentially Constrained Deterministic Motion Planning 39
4.2 Optimized Sampling Sequence . 41

4.2.1 Asymptotic optimality proof 50
4.3 State Lattice Planner . 52

4.3.1 Completeness for state lattice planners 56
4.3.2 Primitive generation . 59

5 Experiments and Discussion 63

5.1 Experiments . 63
5.1.1 Environments . 63
5.1.2 Parameters . 65

vii

Contents

5.1.3 Baselines . 67
5.2 Results and Discussion . 69

5.2.1 Dispersion optimization . 69
5.2.2 Primitive generation . 78
5.2.3 From probabilistic roadmaps to state lattice planning 81

6 Conclusion and Outlook 83

Bibliography 85

viii

1 Introduction

With the technological advancement of recent years in many different fields, robots
operating in close proximity of humans will become a reality in the near future.
Not only must these systems move and coordinate around humans, they might also
be responsible for the human operator as in the case of autonomous cars. In such
safety-critical applications high reliability and verification is of major importance
for every part of the system.
Examples of existing and emerging robotic products heavily depending on robust

motion planning are autonomous cars (e.g., Waymo, Bosch/Daimler) and various
kinds of service robots (e.g., Boston Dynamics, ANYmal). See Figure 1.1 for some
examples.
Motion planning is an integral part of any robotic system that allows to plan

the motion according to the constraints and requirements of the application. Often
motion planners are realized through some form of sampling-based algorithm. This
branch of motion planning, while highly successful due to its scalability to complex
and high-dimensional problems, classically introduces randomness into the planning
process by randomly sampling possible trajectories or system configurations.
While this randomness might be a small contributing factor in comparison to the

randomness that unknown and unstructured environments create, this randomness
still prevents these algorithms to work fully reliable to the point of proven complete-
ness, which is a desired property for systems potentially affecting human life.
Hence, this work focuses on different approaches to derandomize sampling-based

motion planners and even use this deterministic framework to improve the perfor-
mance of motion planners. The prior work in this area is mostly limited to Euclidean
systems without differential constraints and the goals of this thesis are to investigate
ways of improving deterministic planners and to extend the prior work to systems
with differential constraints.

Contributions

In this work, we provide rigorous completeness guarantees for symmetric systems
(potentially differentially constrained, nonholonomic, etc.) for which an optimal
steering function is available. In addition we introduce a numeric optimization
approach that minimizes the number of samples required based on the developed
theory. This way, not only fewer samples are required during planning (i.e., higher

1

1 Introduction

(a) Waymo1 (b) VirtualConveyor2 (c) Spot3 (d) ANYmal4

Figure 1.1: Examples of robotic products relying on robust motion planning.

efficiency), but it can be stated that queries of certain clearance will definitely be
solved by slightly modified versions of batch algorithms like probabilistic roadmap
(PRM) and fast marching tree (FMT).
In addition the theory developed for these batch algorithms is extended to state

lattice planning. We show that this branch focussing on highly efficient motion
planners for differentially constrained systems can be seen as a special case of prob-
abilistic roadmaps and hence, similar tools can be used to proof completeness for
these planners. We use this insight to derive primitive generation schemes that give
provable completeness guarantees.
Finally, as part of the work general implementations of state lattice planners as

well as deterministic samplers for the Open Motion Planning Library (OMPL) are
provided.

Structure

In Chapter 2 we introduce the motion planning problem we are trying to solve and
the required background knowledge to understand the algorithms and terms used
throughout the thesis. Chapter 3 gives an overview of the related literature in the
area of deterministic motion planning. Subsequently we introduce and motivate
our approach in Chapter 4. We show the experiments and results in Chapter 5, in
which we compare our approach to the previously introduced baselines and discuss
the results. Finally, we provide a summary and conclusion in Chapter 6. Most
chapters include definitions, theorems, proofs and examples as necessary. These will
be marked as such.

1https://waymo.com/, accessed: 26.09.2019
2https://fetchrobotics.com/, accessed: 26.09.2019
3https://www.bostondynamics.com/spot, accessed: 26.09.2019
4https://www.anybotics.com/anymal-legged-robot/, accessed: 26.09.2019

2

https://waymo.com/
https://fetchrobotics.com/
https://www.bostondynamics.com/spot
https://www.anybotics.com/anymal-legged-robot/

2 Fundamentals

This section introduces the fundamentals required for the topic of the thesis starting
from the sampling-based motion planning paradigm. The other popular approach,
combinatorial motion planning, will not be discussed since it is not relevant for the
topic and also not applicable in many realistic scenarios that are addressed in this
work. Subsequently the separate problem of differentially constrained motion plan-
ning will be introduced. Afterwards, the most important algorithms are introduced
and finally the relevant parts of sampling theory are summarized. A much more
thorough introduction into the topic can be found in LaValle’s books on planning
algorithms [1]. Before we start with sampling-based motion planning, we intro-
duce the most important notions in the field of motion planning, which are used
throughout this work.

2.1 Motion Planning

Motion planning is generally concerned with finding collision free paths between
start and goal specifications in a so called configuration space.

Definition 1. Let X ⊂ R
D denote the configuration space. A single configuration

in this space will be denoted by x ∈ X . The set Xobs ⊂ X is comprised of the states
which are in collision, either due to self-collision, or collision with the environment.
Xfree = X \ Xobs denotes the set of collision-free (also called valid) states.

Note that the configuration space might have so called identification, which means
that along some dimensions there exists a wrap around, such that the distance as
well as paths can cross the border to appear on the other end again. An example for
an identified configuration space is 1D-orientation, often denoted by SO(2)1. Figure
2.1 visualizes this idea of identification. We mark identified spaces with / ∼. For
example the space shown in Figure 2.1 could be denoted by [0, 1] × [0, 1]/ ∼, with
× denoting the Cartesian product.

Definition 2. A path is defined as a function σ : [0, 1] → X . A feasible path is
defined as a function σ : [0, 1] → Xfree. We denote the set of all points along σ by

1SO(2) stands for special orthogonal group in dimension 2, since rotation matrices for 1D
orientations have the size 2× 2

3

2 Fundamentals

(a) 2D representation (b) Identified representation

Figure 2.1: Visualization of the concept of identification. On the left a 2-dimensional
space is shown for which the horizontal dimension is identified. A path
between the two marked states can go across the boundary. On the right
we show that this can be imagined as a cylindrical space. An example
for such a space would be a cart on a circular rail (identified dimension)
with an actuator that can only vary in height (non-identified dimension).

σ([0, 1]), i.e.,
σ([0, 1]) = {σ(t) ∈ X |t ∈ [0, 1]}. (2.1)

Definition 3. Let γ denote a query, defined by a starting state xinit ∈ X and a
goal state xgoal ∈ X . A feasible query is a query for which a feasible path σ exists,
such that σ(0) = xinit and σ(1) = xgoal. We call such a feasible path σ solution to
γ. Additionally, we define Σγ as the set of all possible solutions to a query γ.

Note that by this definition we limit ourselves to a single start configuration
xinit ∈ Xfree and a single goal configuration xgoal ∈ Xfree. While the first is quite
practical in many cases, the second might not be desirable if a goal region should be
considered. Such a modification would not make a big difference though and with
minor adjustments most of this work should still be applicable to multiple goals or
goal regions.
Based on these definitions we can now state the basic motion planning problem

that we are trying to solve:

Problem 1. Given a query γ either report a solution σ or correctly report that no
solution to γ exists.

Planners that solve this problem are called complete. Often though, especially in
the context of sampling-based motion planning, completeness can not be achieved.
Instead the concepts of probabilistic completeness and resolution completeness are
used.

4

2.1 Motion Planning

Cobs

δ

Figure 2.2: Visualization of the clearance of a query. Given a query γ, δ is the
radius of the ball that can be moved from xinit to xgoal while being fully
contained in Xfree.

Definition 4. A planner is called probabilistically complete if it will return a solution
to all feasible queries γ with a probability of 1 if the planning time t → ∞ or,
equivalently, the number of samples n→∞.

For resolution completeness we must first define the notion of clearance.

Definition 5. The δ-clearance of a path σ is defined by1

δ(σ) = sup{r ∈ R | B(x, r) ⊆ Xfree∀x ∈ σ([0, 1])}. (2.2)

Based on this, the δ-clearance of a query γ is defined by

δ(γ) = sup{δ(σ) |σ ∈ Σγ}. (2.3)

Figure 2.2 visualizes this definition. In simple words, the clearance of a query
is half the width of the widest corridor that connects xinit with xgoal. Given this
notion of clearance we can introduce the concept of resolution completeness.

Definition 6. A planner is called δ̂-complete, if it will deterministically return a
solution to all queries γ with δ(γ) ≥ δ̂.

Note that a δ̂-complete planner might still, when faced with a query γ with clear-
ance δ(γ) < δ̂, return a solution. Thus, such a planner does not ensure that the
solutions it finds have a clearance δ(σ) > δ̂, only that if a solution with δ(σ) > δ̂
exists, it will find some solution (potentially with lower clearance). Generally, if
some clearance for safety reasons is desired, this should be handled by the collision
checker overapproximating the collision model and not by the planning algorithm2.
It is also interesting to stress the difference of planners that are δ̂-complete and

probabilistically complete, which is a notion that can be found a lot in the literature

1See Definition 10 and the related discussion for the definition of B.
2It would be immensely difficult (or even impossible in the general case) to optimize clearance

with a planner that only builds a representation of the configuration space via sampling.

5

2 Fundamentals

[2]. The second only states that the probability of finding an existing solution
converges to 1 as long as the number of samples n → ∞. Note that δ̂-complete
implies probabilistic completeness as long as δ̂ → 0 for n→∞. Thus δ̂-completeness
is a stronger property than probabilistic completeness.
Next, we introduce the notion of optimal motion planning by first introducing a

cost function that measures the quality of a path.

Definition 7. The cost of a path σ is defined as a function c : σ → R≥0.

Common cost functions include path length, energy, time, clearance or weighted
combinations of these. In this work we only consider arc length for which c is given
by

c =

∫ 1

0
||σ̇(t)||dt. (2.4)

For many simple systems, e.g., ones with a constant velocity, optimizing arc length
corresponds to optimizing the required time.
Using this cost we can state the optimal motion planning problem:

Problem 2. Given a query γ either correctly report that no solution to γ exists or,
if γ is a feasible query, report a solution σ∗ such that

c(σ∗) = min
σ∈Σγ

c(σ) = c∗. (2.5)

Note that such a solution σ∗ might not exist if Xobs would be closed. In that case
we would require to find a sequence of solutions (σn)n∈N such that limn→∞ c(σn) =
c∗. This idea is visualized in Figure 2.3. This detail will not be further considered
throughout this work, basically assuming an open set Xobs (and thus, by definition
a closed set Xfree).

Figure 2.3: Optimal motion planning for closed Xobs requires to find a sequence
(σn)n∈N, whose cost converges to the optimal cost, i.e., gets closer and
closer to the boundary without touching it.

The two main directions to solve these problems are combinatorial motion plan-
ning and sampling-based motion planning. The difference is visualized in Figure

6

2.2 Sampling-Based Motion Planning

2.4. Combinatorial motion planning is based on the geometry of the problem and
often uses particular environment properties such as visibility to determine connec-
tions which can contribute to optimal paths. While combinatorial motion planning
normally finds optimal solutions (i.e., it often solves Problem 2) it does not scale
well to more complex environments. As soon as rotations or non-polygonal obstacles
are involved the analysis becomes highly complex or even impossible. The second
branch, sampling-based motion planning, will be introduced next.

xinit

xgoal

(a) Combinatorial

r

xinit

xgoal

(b) Sampling-based

Figure 2.4: Schematic difference between the two main branches of motion plan-
ning. Combinatorial motion planning normally finds optimal solutions,
but becomes highly complex or impossible for more complex geome-
tries and systems, while sampling-based motion planning introduces sub-
optimality, but scales much better to more complex problems.

2.2 Sampling-Based Motion Planning

Next, we introduce the nowadays most common choice for motion planning: sampling-
based approaches. We show how sampling-based motion planners are composed of
simpler components, which makes this paradigm very attractive due to its generality
and extensibility.
The collision checker can be seen as a black box that tells us whether a config-

uration x ∈ X is in collision or not. Normally such a collision checker will take
as input a representation of the environment (e.g., a map) we are planning in, the
geometry of the entity or entities that move in the environment and whose position
are encoded in the configuration x. Based on this information it returns whether
the state is in collision or not. Basically, the collision checker can be seen as a way
of probing the configuration space, checking whether x is part of Xfree or Xobs since
in many cases no explicit description of X is known. If such an explicit description
is known, the collision checker can of course directly use that.
The sampler draws an x from X . If possible it might also directly provide x ∈
Xfree, which again normally only works if Xfree is explicitly known. Otherwise the

7

2 Fundamentals

sampler can be combined with a collision checker by drawing samples until one is
not in collision. Some more insights of samplers in motion planning can be found in
Section 2.5.3.
The steering function (sometimes also called local planner) is used to connect to

poses in free spaces. For example in Euclidean space simple linear interpolation gives
the shortest path between two points. The situation becomes more complicated if
differential constraints are introduced (see Section 2.3). For some systems there
exist ways of quickly generating the optimal (regarding some criterion) paths in free
space. An overview over such systems and approaches in this area is given in Section
3.3. The steering function is closely related to the distance function (we denote it
as dist), which defines the distance between two poses in free spaces. Normally the
distance function and steering function can be seen as two sides of the same coin,
where the distance function returns the path length of the path returned by the
steering function.
All of these components are parts of most sampling-based motion planners. The

way in which these are used to find a path however differs. Let us next consider the
case of graph-based motion planners.

Graph-based planning

Generally these approaches are used to abstract the motion planning problem as a
graph problem. A graph G = (V, E) is made up of a set of vertices V and a set of
edges E that connect the vertices. The edges can be both directed or undirected,
depending on the underlying problem. In the context of motion planning the vertices
normally represent poses in the configuration space X . To build the graph often a
connection strategy has to be specified. Popular approaches are k-nearest neighbors
or connecting with all samples closer than a certain radius r using some distance
function dist, that measures the distance between two poses. In addition to the
vertices, the edges have to be checked for collision as well. For that either a special
collision checker for paths can be used or the same collision checker is used by placing
samples along the path at some sufficient resolution. For most applications such an
approach is reasonable, but there might be cases in which a specific path checker
could be more efficient or accurate.
Once the graph is built, a graph search is performed to find a sequence of vertices

that represent the path between the start and goal vertex. Such a graph problem is
also known as single-pair problem (i.e., single-source and single-destination). In fact
there is no asymptotically faster algorithm to solve the single-pair problem than
to solve the single-source problem [3]. Hence, the popular algorithm for finding
single-source shortest paths in graphs by Dijkstra can be used [4]. While Dijkstra’s
algorithm solves the single-source problem, another algorithm, A*, aims specifically
at solving the single-pair problem by guiding the search using a heuristic function

8

2.2 Sampling-Based Motion Planning

[5]. Note that asymptotically both algorithms still have the same complexity. Still,
in practice A* is used as it gives shorter run times on average, although in the worst
case it might perform worse than Dijkstra’s algorithm.
Due to the similarity of the two algorithms we only explicitly state a general graph

search algorithm (see Algorithm 1) and highlight how it covers both Dijkstra and
A*. This forward search is based on maintaining a priority queue that keeps track of
nodes to be explored and a cost to reach these nodes given the previously explored
nodes. The idea is that in each step we take the node which at this point has the
lowest cost to reach it. Since all other nodes that will be explored afterwards will
have a higher cost there is no way we find a better path to this node later. The
set Vclosed keeps track of all the nodes for which the optimal cost has already been
found. Note that this algorithm assumes non-negative edge costs, which is normally
the case, especially in the context of motion planning.
In lines 2 and 3 the algorithm initializes the set Vclosed and the priority queue Q.

The function f returns the value that will be used to sort this queue. In the initial
step, only our starting node xinit is added. In each step we get the node with the
lowest cost from the queue (line 6) and add it to the set Vclosed indicating that the
shortest path to this node has been found and will not change in the future. Lines
8–10 check if this node is a goal node and end the algorithm. Since we are growing
a tree from the starting node xinit it is straightforward to return the edges which
led from the initial node to the goal node, which represent the final shortest path
(of course we have to store the predecessor of each node, which is not explicitly
stated in this algorithm). Finally, if the node is not the goal, we continue in lines
11–13, by expanding the node (i.e., walking along each edge that originates from
it). Nodes that are already closed are skipped and for others we check whether the
cost via the previous node is shorter than the current estimate (line 12). The call to
UpdateQueue also updates the predecessor in case of finding a shorter path than
the previously stored.

The difference between Dijsktra’s algorithm and A* is the function f that is used
to sort the queue. In Dijsktra’s algorithm it is simply the cost to reach a node from
the starting node. In this case f is given by

f(xfrom,xto) = cG(xstart,xfrom) + cG(xfrom,xto) (2.6)

where cG(xstart,xfrom) is the current cost-to-go in the graph1 (i.e., the sum of edges
to reach xfrom from xstart) and cG(xfrom,xto) returns the cost of the edge from xfrom

to xto. In A* we additionally use the information about the goal state to estimate

1Note that we use cG to differentiate it from c as defined in Definition 7. While the latter is
normally used to determine the edge cost between two neighboring vertices, the first is the cost in
the graph G as defined by the sum of edges.

9

2 Fundamentals

the remaining cost to the goal. f is then given by

f(xfrom,xto) = cG(xstart,xfrom) + cG(xfrom,xto) + h(xto,xgoal) (2.7)

where h(xto,xgoal) is a heuristic that tries to estimate the cost from xto to xgoal.
Thus, A* basically estimates the cost of the full path and explores the space based
on that cost, while Dijsktra explores the space simply expanding from the starting
node using no information about the goal.
Finally, to ensure that the returned result from A* is still an optimum the heuristic

has to be admissible. For that it must satisfy

h(xto,xgoal) ≤ cG(xto,xgoal) (2.8)

or in other words the heuristic must underestimate the true cost. It should be noted
that the use of a heuristic function is especially well suited for the use in motion
planning problems. Here, often a suitable heuristic function is the distance in free
space whereas the cost in the graph is the cost with obstacles and thus larger or
equal to the heuristic.
As hinted at above, this graph-based framework can also be used to plan under

differential constraints. A few special notions and considerations are important in
this regard, which we introduce next.

Algorithm 1 Generic shortest path

1: procedure ShortestPath(V, E ,xinit,xgoal)
2: Vclosed ← {}
3: Q ← PriorityQueue()
4: Push(Q,xinit, f(xinit,xinit))
5: while Q not empty do

6: (xcurrent, c)←Pop(Q)
7: Vclosed ← Vclosed ∪ {xcurrent}
8: if xcurrent is xgoal then

9: return Edges(xinit,xcurrent)
10: end if

11: for xnext in Expand(xcurrent)\Vclosed do

12: UpdateQueue(Q,xnext, f(xcurrent,xnext))
13: end for

14: end while

15: return NoSolution

16: end procedure

10

2.3 Planning under Differential Constraints

2.3 Planning under Differential Constraints

Next, we introduce the topic of differentially constrained motion planning. First,
we introduce the mathematical fundamentals that define this topic and afterwards
we show how this kind of problem can be tackled within the sampling-based motion
planning framework introduced in the previous section. We also touch upon a differ-
ent approach to nonholonomic sampling-based motion planning (namely sampling
in control space) but this will not be the focus of this work.

Definition 8. Let U ⊆ R
M denote the control space. A single control in this space

will be denoted by u ∈ U .
Note that in general the control space U can also be a function of the current state,

i.e., U(x). Going forward we do not state this specifically, but also not exclude it as
a possibility. Next, we can use this notion of control space to define a differentially
constrained system.

Definition 9. Let Σ denote a general differentially constrained system, defined by
its state space X and its control space U . The dynamics of the system are defined
for a given u ∈ U and x ∈ X by the state transition function

ẋ = f(x,u). (2.9)

In the context of differentially constrained motion planning, we extend the notion
of feasible path such that it additionally has to satisfy the state transition function
of the system under consideration. It is also straightforward to formulate the differ-
entially constrained feasible and differentially constrained optimal motion planning
problem given these definitions, which we skip for brevity’s sake. Next, we introduce
a number of terms that characterize these systems.

Linear Linear systems are a special class of systems that can be defined by

ẋ = Ax+Bu+ c. (2.10)

Such systems are well studied in linear control theory [6]. The matrix A

describes the influence of the current state on the next state and the matrix
B describes the relation between the control input u and x. Finally, the term
c describes the drift of the system, which is a concept introduced below.

Kinodynamic Kinodynamic systems are systems that involve differential constraints
of the second order. The term was introduced by Donald [7]. Note that
while the form (2.9) does not show a second order derivative, kinodynamic
systems can still be represented by this formulation. This is common in control
theory, in which the derivative of one state is for example simply given by
another state. Also note that kinodynamic and linear are two separate system
properties.

11

2 Fundamentals

Nonholonomic A system is called nonholonomic if it is not completely integrable.
The mathematical concept was first introduced by Ferrers [8] and was intro-
duced in the context of robot motion planning by Laumond [9]. A more recent
introduction into the concept is provided by LaValle [1]. One easy way of iden-
tifying nonholonomic systems is given by Sussmann [10]. Systems which have
less controls then state dimensions are called nonholonomic, if even though
less control directions exist, it can be moved in all directions by combining
multiple actions. The prime example for that are car-like systems, for which
some form of parallel parking maneuver is required to move it sideways.

Control-affine A common nonlinear class of systems are control-affine systems which
can be described by

ẋ = g0(x) +
M
∑

i=1

gi(x)ui (2.11)

where the term g0(x) describes the drift (see below).

Driftless A driftless system is one, for which there always exists some input u such
that ẋ = 0. For example as long as u = 0 ∈ U , c = 0 and g0 = 0 imply that a
linear system and control-affine system are driftless, respectively. Conversely
a system that is not driftless, inhibits drift, which intuitively means that the
systems state will change no matter the provided input u.

As we see later in Chapter 4, an important concept related to planning under
differential constraints is the reachable set.

Definition 10. Let R(x, δ) defined by

Rdist(x, δ) = {y ∈ X | dist(x,y) ≤ δ} (2.12)

be the δ-limited reachable set of a system Σ.

In all the cases that we consider, the steering function dist that defines this set,
can be considered as both the time as well as the path length (which are the same
for systems moving with unit velocity). In these cases, the reachable set contains all
the points that can be reached in time not greater than δ or with paths not longer
than δ.

Note that for Euclidean systems with linear interpolation the δ-limited reachable
sets will simply be the Euclidean balls of some radius. Since time-limited reachable
sets and distance-limited balls are equivalent in the context of the thesis we use
Bdist(x, δ) and Rdist(x, δ) interchangeably throughout this work1. If we talk explic-
itly about some form of balls or reachable sets we replace dist with an identifier for
the system under consideration. For example in the Euclidean case we use B2.

1We use R, if we want to stress the applicability to systems under differential constraints, and
B if we talk about Euclidean balls.

12

2.3 Planning under Differential Constraints

l φ

ρ φ

θ

(x, y)

Figure 2.5: Car-like kinematics. The position of the car is defined by x and y, while
the heading is defined by θ. The input uφ = φ defines the steering angle
(i.e., the angle of the wheels) and the input us the forward speed of the
car (not seen in the image). Based on the axis length l of the car and
steering angle φ, a turning radius ρ = l/ tanφ can be calculated. (Image
reproduced from LaValle [1])

2.3.1 Car-like kinematics

We now describe car-like kinematics, which is a nonholonomic system that is both of
practical use and well analyzed. Due to these properties we use it as an exemplary
system for the experiments of Section 5. In general the kinematic constraints of the
system can be formulated as

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
ρ
uφ.

(2.13)

The input space U is two dimensional with us describing the speed and uφ describing
the steering angle. Figure 2.5 visualizes the system.
Many special cases can be defined for this kind of system by limiting the control

set U [1]. The Dubin’s car is obtained by limiting us to {0, 1} and uφ to [−1, 1]. Thus
we can only go forward or stand still. The system is named after Lester Dubin’s,

13

2 Fundamentals

who derived the optimal paths for this system [11]. A closely-related and relevant
system for this work will be the Reeds-Shepp car [12], which is obtained by limiting
us to {−1, 0, 1} and uφ to [−1, 1]. Basically, it is an extension of Dubin’s car to also
allow backwards driving.
Note that the system can be reformulated as a control-affine system by defining a

new control ũφ = uφus, with the same range as uφ. The whole system is then given
by

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
ũφ
ρ

(2.14)

and thus we can specify the control vectors g as

gs =

cos(θ)

sin(θ)

0

gφ =

0

0
1
ρ

. (2.15)

For the Reeds-Shepp system exists an optimal steering function that given two poses
x1 and x2 gives the control, path and path distance between the two poses. Figure
2.6 shows a few paths for the Reeds-Shepp car. The original work that proved the
optimality of the paths was done by Reeds and Shepp [12]. A worked out example,
that further decreases the number of required paths is provided by [10]. Furthermore
another in-depth description of the problem (as well as related problems) is provided
by Soueres [13].

14

2.4 Sampling-Based Planning Algorithms

(a) θgoal = 0 (b) θgoal = π/2

Figure 2.6: Distance function and paths for the Reeds-Shepp case. The initial pose
x1 = [0, 0, 0] for all paths, while the end pose is constrained to x2 =
[x2, y2, 0] in (a) and x2 = [x2, y2, π/2] in (b). It can be seen how the
steering function in front of the car gives a small distance, while parallel
to the car, parallel parking maneuvers are required and thus the distance
is greater.

2.4 Sampling-Based Planning Algorithms

This section describes the utilized algorithms for the subsequent experiments. Dif-
ferent variations to each algorithm exist, hence, we highlight the nuances which are
important to the deterministic behavior and the subsequent analysis. The theoret-
ical extension of these algorithms to differentially constrained motion planning is
provided by Schmerling [14, 15].

2.4.1 Probabilistic roadmap

The probabilistic roadmap planner (PRM) is the prime example of sampling-based
motion planning. It was introduced by Kavraki in 1996 [16]. The algorithm itself is
listed in Algorithm 2. In general it is a straightforward realization of the principles
introduced in Section 2.2.
The algorithm shown here is a simplified version of the originally proposed algo-

rithm. The original version also includes steps to add additional samples in difficult
spots, which has been omitted for easier analysis and to conform to the deterministic
framework. Similar sampling-biasing techniques are proposed a lot in the literature
[16, 17, 18, 19]. Similar simplified versions of PRM have been utilized by Janson
[20] and Schmerling [15]. In addition similar to the original paper, we split up the

15

2 Fundamentals

algorithm into a learning phase and query phase. The idea here is use the planner
in a multi-query way: first build a roadmap and then reuse it for multiple queries.
In general it is straightforward to use the algorithm in a single query context by
simply combining the two steps.
Let us next walk through the algorithm once. A visualization of the algorithm is

shown in Figure 2.7. The algorithm first builds the set of vertices of the roadmap
according to some termination criterion (Figure 2.7(a), line 2). The first loop in lines
4–10 creates the roadmap. For each vertex x we find the connection candidates via
the call to Near(x). This function defines the aforementioned connection strategy.
Once the close neighbors have been found, we check whether the connection from x

to its neighbor candidate y is collision-free. If it is, we add the edge to the roadmap
(line 7). The final roadmap after adding all the edges is shown in Figure 2.7(b).
After the full roadmap is built, it should be stored in a multi-query scenario. From
line 11 begins the query phase. First, the start xinit and goal xgoal are added to the
set of vertices after which the same connection loop is used as before, but only for the
newly added vertices (Figure 2.7(c), lines 12–18). Finally, the graph is fully defined
and we can use the shortest path algorithm that we have previously introduced in
Section 2.2 (Figure 2.7(d), line 19).

Algorithm 2 Probabilistic Roadmap

1: procedure ProbabilisticRoadmap

2: V ←SampleFree

3: E ← ∅
4: for x ∈ V do

5: for y ∈ Near(x) do
6: if CollisionFree(x,y) then

Learning phase
7: E ← E ∪ {(x,y)}
8: end if

9: end for

10: end for

11: V ← V ∪ {xinit,xgoal}
12: for x ∈ {xinit,xgoal} do
13: for y ∈ Near(x) do
14: if CollisionFree(x,y) then
15: E ← E ∪ {(x,y)}

Query phase
16: end if

17: end for

18: end for

19: return ShortestPath(V, E ,xinit,xgoal)
20: end procedure

16

2.4 Sampling-Based Planning Algorithms

(a) Sample Xfree

r

(b) Build roadmap

xinit

xgoal

(c) Add start and goal

xinit

xgoal

(d) Solve graph problem

Figure 2.7: Visualization of the probabilistic roadmap algorithm solving a query.
In (a) the space is sampled (in this case the termination criterion is
nvalid = 11), in (b) the edges are computed (in this case the connection
strategy is a fixed radius r), in (c) the start xinit and goal xgoal are added
using the same connection strategy (different would be possible too, e.g.,
larger radius). Finally, a shortest path algorithm like A* is employed to
find the shortest path in the roadmap as shown in (d).

For the comparison to other algorithms it is important to note the possible ter-
mination conditions that PRM allows:

• fixed number of sample attempts nall

• fixed number of valid samples nvalid

• fixed time to build the roadmap

The first two are straightforward, first we sample enough vertices and then the
roadmap is built and the graph search is performed. For the last case the situation
is more difficult, since we do not know a priori how long each state will take. OMPL
[21] provides a multithreaded solution though in which vertices and edges are con-
sistently added to the graph in one thread, while a second thread consistently runs
the shortest path search to find a solution. This way both threads are stopped once
the termination time is reached and the best solution found so far is returned.

The algorithm was originally proposed as a multi-query algorithm since one could
build the roadmap once and reuse it for multiple queries as the collision checking

17

2 Fundamentals

has already been performed for the whole space, thus being able to solve further
queries quickly without the costly use of the collision checker.
A number of different variants have been introduced for this algorithm. LazyPRM

[22] tries to minimize the planning time by skipping collision checks while building
the roadmap and aims at single-query application. PRM* [2] is a version of PRM
that provably converges to the optimal cost. The main difference between PRM
and PRM* are conditions on the connection strategy and steering function that
ensure asymptotic optimality. The steering function must be optimal and for the
connection strategy a connection radius

r(n) ≥ γPRM (log(n)/n)1/D (2.16)

with γPRM > 2(1+1/D)1/d (µ(Xfree)/ζd)
1/D is required, where D is the dimension of

the space, µ denotes the volume of a set and ζD is the volume of the D-dimensional
ball in Euclidean space. Equivalently in the case of a k-nearest neighbors connection
strategy the condition on k can be formulated as

k(n) ≥ kPRM log(n) (2.17)

with kPRM = e(1 + 1/D). Note that strictly speaking these conditions only hold
for the Euclidean case. The intuition behind these formulas is that the connection
radius must not shrink faster than the dispersion of the space since that would
cause a disconnected roadmap. Extensions to differentially constrained systems are
provided by Schmerling [14, 15].

2.4.2 Fast marching tree

Another planning algorithm called fast marching tree (FMT*) that is based on dy-
namic programming was introduced by Janson [23]. The algorithm tries to minimize
unnecessary calls to the collision checker and is thus faster for single queries when
compared to probabilistic roadmaps. The algorithm can also be seen as a version of
the shortest path algorithm that is more tightly coupled with the motion planner.
FMT* is shown in Algorithm 3 and Figure 2.8 illustrates the most important

steps. The algorithm is initialized by sampling a number of valid samples (Figure
2.8(a), line 2), furthermore the start and goal vertices are added to the set of vertices
V. The algorithm maintains three sets: Vopen, for which we know the shortest path
from xinit, Vunvisited, which contains all vertices to which we do not know the fastest
path yet, and Vclosed for which we have checked all possible successors. Initially only
xinit is put into Vopen and all other vertices are put into Vunvisited (Figure 2.8(b),
lines 4–6). Next, we keep picking the vertex in Vopen that has the lowest cost right
now (Figures 2.8(c) and 2.8(f), line 7 and 19). This is the equivalent of line 6 in
Algorithm 1. We refer to this vertex as z. In the next step we find all the vertices

18

2.4 Sampling-Based Planning Algorithms

that are, according to the connection strategy, close to z (see circle and red vertices
in Figure 2.8(c) and 2.8(f), line 9). For each of these vertices y we check, which is
the closest vertex to it in Vopen (Figure 2.8(d), line 10) and connect to it, if the path
between them is collision-free (lines 11–14). Note that while we got to vertex y via
z, we are not necessarily connecting y to z (it naturally often happens, but nothing
in the algorithm requires it).
One special thing to note about FMT* is that in lines 10–15, we only check for

the closest vertex. If there is a collision in-between, and the actual best connection
would have been z, we will never come back to this vertex to attempt this connection.
Strictly speaking, because of this, the algorithm can never provide non-probabilistic
completeness due to this connection strategy 1. Asymptotically though the algorithm
retains completeness as noted by the authors [20]. The exact conditions that need
to come together such that a suboptimal connection occurs are also provided by the
authors.

Algorithm 3 Fast Marching Tree

1: procedure FastMarchingTree

2: V ← {xinit,xgoal}∪SampleFree
3: E ← ∅
4: Vunvisited ← V \ xinit

5: Vopen ← xinit

6: Vclosed ← ∅
7: z ← xinit

8: while z is not xgoal do

9: for x ∈Near(z)∩Vunvisited do

10: ymin ← argminy∈Vopen∩Near(y){cG(xinit,y) + c(y,x)}
11: if CollisionFree(ymin,x) then
12: E ← E ∪ {(ymin,x)}
13: Vopen,new ← Vopen,new ∪ {x}
14: Vunvisited ← Vunvisited \ {x}
15: end if

16: end for

17: Vopen ← (Vopen ∪ Vopen,new) \ {z}
18: Vclosed ← Vclosed ∪ {z}
19: z ← argminy∈Vopen

{cG(xinit,y)}
20: end while

21: return Path(E ,xinit,xgoal)
22: end procedure

1This could possibly be fixed by checking all nodes in increasing distance, but this option was
not explored by the original authors possibly for efficiency reasons.

19

2 Fundamentals

Vclosed Vopen Vunvisited, next Vunvisited

(a) Sample Xfree

xinit

xgoal

(b) Add start and goal

xinit

xgoal

(c) Build tree 1

xinit

xgoal

(d) Build tree 2

xinit

xgoal

(e) Build tree 3

xinit

xgoal

(f) Build tree 4

xinit

xgoal

(g) Final tree

xinit

xgoal

(h) Find solution

Figure 2.8: Visualization of the fast marching tree algorithm solving a query. See
text for description.

Compared to PRM* the algorithm can only terminate based on a fixed number
of samples (either nall or nvalid). No straightforward way exists so far to add more
samples to an already solved query. Thus for time-based comparisons one would
have to find the number of samples that approximately takes a certain amount of
time. Also, the same connection strategies as introduced before can be used for

20

2.4 Sampling-Based Planning Algorithms

FMT*.

2.4.3 State lattice-based approaches

A slightly different approach to sampling-based motion planning that does not follow
the random sampling paradigm, are so called state lattice-based approaches. In
general these approaches use a set of motion primitives P and concatenates these
to find a solution. By carefully choosing these motion primitives, planners can
have many desirable properties. Since such motion primitives can be used inside of
planners in quite a few different ways we provide no algorithm here, but rather just
explain the different design considerations that arise for such planners. We provide
a specific algorithm in Section 4.3 in the context of showing resolution completeness.
Two main directions exist for these planners. Tree-based lattice planners and

graph-based lattice planners. The first will grow a tree of motion primitives starting
from xinit and tries to connect the tree to the goal xgoal. The latter builds a graph
in which, similar to PRM*, a graph search algorithm can be used to find a solution.
Both of these approaches have to deal with the problem of connecting the tree or

graph to the goal state. In case of a goal region, no approximation is required and
we can simply check whether vertices are inside of it. For goal states, two options
are possible. First, we can simply find the vertices close to the goal and approximate
it like this (which implicitly is the same as a goal region) or we can use a steering
function (if available) to try to find exact connections from the goal state to the tree
or roadmap.
Motion primitive sets in general lead to dense sets of points. The problem with

this is that the motion primitives do not efficiently explore the space. Thus, to
enable quick exploration of the space, the tree should be pruned if a vertex in some
proximity already exists. Figure 2.9 compares the resulting trees when pruning at
different resolutions. Clearly by pruning the tree, the same number of vertices lead
to a larger covered area. In general such dense motion primitive sets lead to trees
and not graphs since the motion primitives do not lead on top of other end points.
Hence, such primitive sets are mostly suitable for tree-based planners. Otherwise
approximating the edge connections is a valid alternative at some resolution. Such
an approach leads to discontinuous paths, which may still be viable in practice,
depending on the whole motion planning stack1.
An alternative to motion primitives that lead to dense sets are motion primi-

tives that all end on some predefined grid. Such a grid can be both uniform and
nonuniform and by designing the motion primitives to start and end on the grid no
pruning scheme is required. The grid defines the density of the roadmap. For this
approach connecting both start and goal is not straightforward and require either a

1Generally a low-level controller is normally used to track trajectories and can deal to some
extent with discontinuities.

21

2 Fundamentals

(a) No pruning (b) sgrid = 2m (c) sgrid = 5m

Figure 2.9: Comparison of resulting trees when pruning it at different resolutions.
In each case 1000 vertices are generated, while the tree on the left is not
pruned at all, the others only allow a single vertex in a grid cell of size
sgrid (regardless of heading). Clearly a huge difference in the covered
area can be observed (same scale for all three trees).

steering function or approximation. The advantage of this approach is that since by
concatenating the primitives the resulting endpoints will always be part of the grid
and thus a dense graph can be built without any approximations. Therefore, such
motion primitives are well suited for graph-based planners.
Figure 2.10 compares these two paradigms of motion primitive sets.

2.4.4 Other algorithms

Finally, we want to give a short overview over other planning algorithms, which are
not as relevant to this work, but are very popular in practice. We will not give
explicit algorithms for these approaches, but only summarize the key idea behind
the approach.
The first algorithm that we want to shortly introduce is called rapidly-exploring

random tree (RRT) [24]. As the name suggests, this planner is based on building a
tree starting from the current state and is well suited for differentially constrained
motion planning. The algorithm works by randomly sampling the space and then
use a steering function that ignores obstacles to steer from the closest state in the
tree towards the sampled state. But instead of fully connecting to it, only a short
step towards the right direction is made. This is either done from both the start
and goal pose and attempts are made to connect the two trees, or a single tree is
grown until it reaches a goal set. Many variants of this planner have since been
proposed. Famous examples are the bidirectional version in Euclidean space, called
RRTConnect [25] and the asymptotically optimal version RRT* [2] which rewires
the tree if shorter paths are found.
RRT* is a famous example for an anytime algorithm, which refers to the fact that

22

2.4 Sampling-Based Planning Algorithms

the algorithm finds better solutions the longer it runs. Multiple planners extend
RRT* to faster converge to the optimum solution, by constraining the sampling
once an initial solution is found, like Informed RRT* [18] and batch informed trees
(BIT*) [26].
An interesting classification can be made between RRT*, BIT* and FMT*. Whereas

RRT* is an anytime algorithm, that works by adding samples one at a time, BIT*
is an informed batch variant that adds and processes multiple samples at a time.
FMT* on the other hand is not an anytime algorithm as it only samples once and
builds the whole search tree based on these samples. Hence, a classification of plan-
ners can be made depending on the way they sample the space.

23

2 Fundamentals

(a) Dense primitives (b) Dense 250 vertices (c) Dense 2500 vertices

(d) Grid primitives (e) Grid 250 vertices (f) Grid 2500 vertices

Figure 2.10: Comparison of dense and grid-based motion primitive sets. The left
column shows the primitives, the middle columns shows the graph af-
ter 250 vertices (including the end vertices) and the right column after
2500 vertices. Clearly the grid-based primitives naturally lead to a
well-connected graph with all vertices lying on the grid, while with the
dense set, concatenating the motion primitives does not lead on top of
previous end points and thus a dense tree is formed. All six figures are
drawn at the same scale, which shows that the grid-based primitives
naturally cover a larger area, with the same number of vertices. An-
other difference is that spatially close vertices in the tree might only be
connected via the origin of the tree, while in the graph all vertices are
well connected.

24

2.5 Sampling Theory

2.5 Sampling Theory

Typically samplers for independent, identically distributed (i.i.d.) variables are de-
signed to satisfy statistical tests. In the motion planning context another metric
called dispersion is much more important as it directly relates to how well a set of
samples covers a space.
In this section first the dispersion metric and discrepancy metric are defined in

general terms and subsequently sampling sequences that optimize this metric asymp-
totically are introduced. Finally, the general idea of why these metrics are important
in the context of sampling-based motion planning are introduced. A more thorough,
theoretical introduction to these ideas will be given in Section 3.1. This section
mostly follows LaValle’s introduction to sampling theory [1].

2.5.1 Dispersion

d2

(a) d2 dispersion

d∞

(b) d∞ dispersion

Figure 2.11: Visualization of the dispersion metric for different distance functions.
(a) shows the l2 norm, while (b) shows the l∞ norm. The actual dis-
persion of the point sets are denoted by d2 and d∞ respectively.

The original definition of dispersion can be found in Definition 6.2 by Niederreiter
[27]

ddist = sup{r > 0|∃x ∈ X with Bdist(x, r) ∩ S = ∅}. (2.18)

Intuitively the dispersion of a set of samples S is the radius of the largest ball that
does not contain a single sample. Dispersion is defined based on a distance function
dist, which measures the distance between two points in the space. Figure 2.11 vi-
sualizes the dispersion metric for the Euclidean norm and infinity norm. In practice
d∞ is often easier to handle analytically. Clearly though, it is possible to establish

25

2 Fundamentals

a relationship between different dispersion metrics. The idea here is, that if the
dispersion of one distance function is known, we can upper and lower-bound the
dispersion of a different distance function by outer and inner-bounding the ball re-
spectively. I.e., given a set S with known dist1-dispersion ddist1, Bdist2(x, f(ddist1)) ⊆
Bdist1(x, ddist1) ⊆ Bdist2(x, g(ddist1)) ∀x ∈ X ⇒ f(ddist1) ≤ ddist2 ≤ g(ddist1). For
example in the case of d2 and d∞ dispersion this gives

d∞ ≤ d2 ≤
√
Dd∞. (2.19)

One can imagine that while random samples have a decent dispersion (i.e., better
than highly non-uniformly distributed samples), it is worse than the dispersion of
sets that are placed in a deterministic uniform way. Figure 2.12 shows a range of
sets, which visualizes this idea.

(a) Non-uniform i.i.d. (b) Uniform i.i.d. (c) Halton [28] (d) Sukharev [29]

Figure 2.12: Qualitative comparison of the dispersion for different kinds of sampling
sets. The last two sets are deterministic.

2.5.2 Discrepancy

Another important metric for a sample set S is discrepancy. It is defined by

DR = sup
R∈R

(∣

∣

∣

∣

|S ∩R|
|S| − µ(R)

µ(X)

∣

∣

∣

∣

)

. (2.20)

Similar to how dispersion is defined based on a distance function, discrepancy is
defined based on a range space R. A range space is a set of subsets of X . Normally
such a range space would be defined by some characteristic of the subsets, but also
an explicit range space of some subsets of X would be admissible. Typical examples
of range spaces would be axis-aligned rectangles

Raar = {A |A = [a1, b1]× · · · × [aD, bD],A ⊆ X} (2.21)

and Euclidean balls

Reuc,balls = {A |A = B2(x, r) with x ∈ X , r ∈ R>0 s.t. A ⊆ X}. (2.22)

26

2.5 Sampling Theory

(a) Raar discrepancy (b) Reuc,balls discrepancy

Figure 2.13: Visualization of different range spaces. The gray shapes are samples
from the ranges space, while the green sets visualize a possible candidate
that might define the discrepancy DR. Note how these are either big
with few samples (a) or small with many samples (b).

Finally, µ(·) denotes the volume of a set. In the literature discrepancy often uses
axis-aligned rectangular subsets, since, similar to d∞ dispersion, this metric is suited
well for analytic analysis.
Intuitively the discrepancy can be seen as how even the data is distributed with

regards to the range space. That is, the right fraction in Equation (2.20) is the
estimated ratio of samples that, based on the volume, should be inside the subset,
while the left fraction is the actual ratio of samples. The discrepancy is defined by
the biggest absolute difference that can be found based on the range space. Basically,
there are two ways of maximizing the discrepancy: a big area with particularly few
samples, or a small area with particularly many samples.
Figure 2.13 visualizes the discrepancy for different range spaces. Something to

note is, that even if our set of samples might have a low discrepancy for one range
space, the samples might still look ordered. The choice of range thus has a big
influence.
For axis-aligned rectangle discrepancy Daar and infinity dispersion d∞ we can

upper bound the dispersion using the discrepancy by [1]

d∞ < D1/D
aar . (2.23)

This automatically allows to use low-discrepancy sequences as low-dispersion se-
quences, although it should be noted that better low-dispersion sequences might be
possible when ignoring discrepancy.

27

2 Fundamentals

2.5.3 Sampling sequences

We next introduce a few sampling sequences from the literature that are mostly de-
signed to be low-discrepancy. Note that due to the link given between dispersion and
discrepancy, low-discrepancy automatically implies low-dispersion. In this work we
mostly use the Halton sequence as a representative general low-dispersion sequence.
In general all of these sequences have the same asymptotic dispersion of O

(

n−1/D
)

1.
But the sequences differ in the constant hidden in the O-notation. It is not possible
to find the constants for Halton though, but at least in lower-dimensions it looks
well-distributed and the implementation is straightforward, which is why we have
decided to use it for the experiments.

Van der Corput sequence

The van der Corput sequence [30] is a one-dimensional low-discrepancy sequence over
[0, 1]. Mathematically the n-th number is given by first finding the representation
of the number n in the base b

n =

L−1
∑

k=0

dk(n)b
k (2.24)

where dk(n) denotes the k-th digit of the number. The n-th van der Corput number
sn is then given by simply taking the same digits as the decimal places, i.e.,

sn =

L−1
∑

k=0

dk(n)b
−k−1. (2.25)

While the sequence was originally motivated via binary operations, for general
bases such generation schemes do not work anymore. Algorithm 42 shows a possible
way to generate these numbers arithmetically.

Halton sequence

A generalization of the van der Corput sequence to higher dimensions D is the
Halton sequence [28]. Generally it simply uses multiple van der Corput sequences
with different bases bi, i = 1, ..., D to create a low-discrepancy sequence. Note that
these bases should be mutually prime, since otherwise undesired correlations will
occur3. Algorithm 5 shows the generation of the Halton sequence based on the

1We write f(n) ∈ O (g(n)) if there ∃n0 ∈ N, k ∈ R such that |f(n)| ≤ k|g(n)| ∀n ≥ n0.
2https://en.wikipedia.org/wiki/Halton_sequence, accessed: August 20, 2019
3Imagine using the same base to generate a 2D Halton sequence, all points would be pairwise

equal and instead of covering [0, 1]× [0, 1] the numbers would all lie on the line x = y.

28

https://en.wikipedia.org/wiki/Halton_sequence

2.5 Sampling Theory

Algorithm 4 Van der Corput sequence

1: procedure VanDerCorputSample(n, b)
2: f ← 1
3: r ← 0
4: while n > 0 do

5: f ← 1
b

6: r ← r + f(1 mod b)
7: i← ⌊ ib⌋
8: end while

9: return r
10: end procedure

previous sample. An alternative implementation could of course also use the van der
Corput generation from Algorithm 4, but that would result in a slower computation
the more samples are generated, but might be faster initially. A more detailed
implementation, that also handles numerical issues is also provided by Halton [31].
An alternative that also deals with the same numeric issues and is based on integer
arithmetic is proposed Berblinger [32]. For the experiments shown in Chapter 5,
Algorithm 4 was implemented and generalized for multiple dimensions.

Algorithm 5 Halton sequence

1: procedure HaltonSamples(sn−1 ∈ R
D, b ∈ R

D)
2: s← 0 ∈ R

D

3: for i = 1, ..., D do

4: y ← 1
bi

5: x← 1− sn−1,i

6: while x ≤ y do

7: y ← y
bi

8: end while

9: si ← (bi + 1)y − x
10: end for

11: return s

12: end procedure

2.5.4 Sampling in motion planning

Different sampling schemes fulfill different criteria. For example low-discrepancy
sampling is helpful for numerical integration methods. In this section we look into
desirable properties of the sampler for motion planning systems. We see that, de-

29

2 Fundamentals

pending on the use case, different qualities in the sampler are desirable. This way
we can also easily relate the topic of this thesis, i.e., deterministic sampling-based
motion planning, to this issue of choosing the sampler.
Desirable properties for motion planners are (resolution) completeness, speed and

its ability to find high quality solutions as well as achieving a high success rate for
difficult queries.
Recently, learning-based approaches surfaced which learn latent representations

for the map and learn where to sample the space to find a solution with less samples
[33, 34]. Such an approach clearly works in favor of the speed requirement. Less
samples are required by placing them in places which will most likely be required.
One could also imagine that it might help with difficult queries if the characteristics
of difficult parts are learned well.
Note that such approaches often learn a sample distribution, but the drawn sam-

ples are still probabilistic. Thus only probabilistic completeness can be achieved and
even that might be lost due to the way the samples are picked heuristically [2].
A different branch in this area is replacing the random i.i.d. sampler with a de-

terministic sequence. Such sequences, as introduced in the previous section, give
non-probabilistic bounds on the dispersion, which, as has been shown originally by
LaValle [35] can be used to derive non-probabilistic completeness for motion planning
problems. In general when comparing to i.i.d. samples reportedly this approach also
achieves higher success rates, lower cost and requires less samples (i.e., is faster) to
find equally good solutions. Due to its relevance for this work an in depth summary
of this approach is given in Section 3.1.
In general it seems to be likely that machine learning-based approaches will on

average require less samples and thus will outperform both i.i.d. and deterministic
approaches in many runs.
Right now there does not seem to exist a single approach that can combine both

non-probabilistic completeness and the advantages given by machine learning. In
general of course it might be possible to simply plan in parallel, with two planners,
with the deterministic planner working as a safety net for cases in which the learning-
based planner fails to find a solution.

30

3 Related Work

In this chapter we go over the related work in the area of deterministic motion
planning. The two main directions will be introduced. The first is the use of de-
terministic samplers, in which the same (or only slightly modified) versions of the
sampling-based algorithms are used. In this context we also repeat the most im-
portant theoretic results, as they will directly relate to our extensions in Chapter 4.
The theorems have been slightly rewritten to conform to our notation.
The second direction are state lattice-based approaches. While Section 2.4.3 intro-

duced the basic idea of planning with motion primitives, in this section we summa-
rize the literature in this area, including ways of generating and optimizing motion
primitives and application-specific publications.
In general, all approaches in this chapter fit into the range of deterministic sampling-

based motion planning as introduced by LaValle [35]. Figure 3.1 visualizes this range
of planners. On the right-hand side is the probabilistic roadmap planner that uses
i.i.d. samples to build the roadmap. Replacing the sampler with a quasi-random se-
quence (i.e., the Halton sequence) leads to quasi-random roadmaps. A more regular
way of picking the samples is obtained with lattice-based samples. Such roadmaps
are for example constructed in the state lattice-based approach, but also for samples
in the Euclidean space there are ways of generating a regular lattice. Finally, when
using an orthogonal grid we come to subsampled grid-search. The only difference to
classical grid-search, on the left-hand side is that collision checking is still performed
along the edges, while in classical grid search, collision checking and planning is done
at the same resolution.
While the approach introduced in Section 3.1 fits into the category of quasi-

random roadmap, the lattice-based approach introduced in Section 3.2 fits into the
lattice-based grid-search category.

31

3 Related Work

Classical
grid-search

Cobs

Subsampled
grid-search

Cobs

Lattice-based
grid-search

Cobs

Quasi-random
roadmap

Cobs

Probabilistic
roadmap

Cobs

Deterministic

Figure 3.1: Visualization of the range of planners. See text for description.

3.1 Deterministic Sampling for Motion Planning

The link between dispersion, discrepancy and motion planning has originally been
discovered by LaValle [35]. The key result that LaValle proved can be summarized
by the following theorem:

Theorem 1. Given a query γ, deterministic roadmap planners will, after n low-
dispersion samples have been picked, either report a solution path or correctly de-
clare that one of the following is true: there is no solution path, or δ(γ) < 2βn−1/D =
δ̂.

This is equivalent to stating that deterministic roadmap planners are δ̂-complete.
Note that LaValle did not consider a specific planner or connection radius. For the
planner he introduces the notion of deterministic roadmap planners, which includes
the four deterministic planners shown in Figure 3.1 when using a low-dispersion sam-
pler. For the theorem it is assumed that the dispersion after n samples is bounded
by

d2 ≤ βn−1/D ∈ O
(

n−1/D
)

(3.1)

where β is the constant hidden in the O-notation and generally depends on the
dimension D. For the connection strategy a sufficiently large connection radius is
assumed. Also, he only considers Euclidean systems, i.e., systems for which the
distance and path between two poses is given by the Euclidean distance and linear
interpolation respectively.
Following from this result LaValle derives multiple asymptotic qualities, two of

which we shortly present here [35]. All of them stem from the fact that i.i.d. samples
have an asymptotic dispersion of

d2 ∈ O
(

(log(n)/n)1/D
)

, (3.2)

while low-dispersion sequences achieve

d2 ∈ O
(

n−1/D
)

. (3.3)

32

3.1 Deterministic Sampling for Motion Planning

Theorem 2. The number of samples required by deterministic roadmap planners
to be δ̂-complete is asymptotically optimal.

This result follows from the fact that there is no sequence achieving lower asymp-
totic dispersion than O

(

n−1/D
)

.

Theorem 3. For a fixed dimension D, Algorithm 2 with i.i.d. samples requires

O
(

(log n)
1
D

)

times as many samples as DRM planners to achieve the same d∞

dispersion.

This result simply highlights the asymptotic difference between i.i.d. and low-
dispersion sequences. Relating this to Theorem 3.1 we can see that by using low-
dispersion sampling, less samples are required to get the same guarantees. In addi-
tion, in comparison to i.i.d. samples the guarantees hold deterministically, not only
with a probability of 1 if n→∞.
Janson [20] extended the dispersion analysis to optimal motion planning. Next,

we shortly present the two most important theorems from this work.

Theorem 4. Given a sampler with asymptotic dispersion d2 ∈ O
(

n−1/D
)

and a
connection radius1

rn ∈ ω
(

n−1/D
)

(3.4)

then
lim
n→∞

cn = c∗. (3.5)

This is the deterministic version of the result from Karaman’s [2] condition on the
PRM connection radius. Similar to the results from LaValle, the difference to the
original PRM* connection radius is the missing factor log(n)1/D.

The following theorem bounds the cost, based on the cost of a path with some
clearance, again the idea here is that because of the dispersion, we can be sure to
generally find a path of certain clearance, which can then be used to bound the cost
of the actually found solution.

Theorem 5. Given a set of samples S with dispersion d2 and a connection radius
r > 2d2 we can bound the solution cost c, based on the optimal cost c(δ) with
clearance δ > r + d2 by

c ≤
(

1 +
2d2

r − 2d2

)

c(δ). (3.6)

Poccia looked into finding deterministic sequences, specific to differentially con-
strained systems [36]. In this work we reuse some of his ideas. Specifically he
introduced optimized samples for two systems:

1We write f(n) ∈ ω (g(n)) if f(n)/g(n) → ∞ for n → ∞.

33

3 Related Work

• linear systems (see Equation (2.10)) with quadratic cost and fixed-time optimal
steering function, and

• Reeds-Shepp car (see Section 2.3.1).

In the first case he shows that by taking a general low-dispersion sequence one can
apply a transformation to fit them to the system specific case. In the Reeds-Shepp
case he proposes a tailored solution that optimizes the positions of the samples
based on the weights for the ball-box theorem. Note that the author also provides
the general idea for driftless control-affine systems and uses it to derive the Reeds-
Shepp case, but this derivation is not general and will not work in the general
driftless control-affine case.
As we use these optimized samples for the Reeds-Shepp system as a baseline to

compare our approach against, we next give a description of the generation procedure
proposed by Poccia. The general approach is based on first finding the description of
the ball-box theorem (for more on sub-Riemannian geometry see [37, 38, 39]). These
are the weight vector w ∈ N

D as well as the privileged coordinate vectors Li(x)
with i = 1, ..., D. Together these describe the orientation and size ratios of boxes
that can inner and outer bound the time-limited reachable sets of a system in each
point x. Finding samples which are asymptotically low-dispersed considering these
boxes thus will automatically also be asymptotically low-dispersed considering the
reachable sets of the system. Note that by doing so, we are approximating the system
dynamics crudely and the practical quality of the samples will vary a lot depending
on other parameters (e.g. number of samples, system constants, environment size).
For the Reeds-Shepp case the privileged coordinate vectors in the Reeds-Shepp

space are given by

L1(x) =

cos θ

sin θ

0

,L2(x) =

0

0
1
ρ

,L3(x) =

−1
ρ sin θ

1
ρ cos θ

0

(3.7)

and the weight vector by w =
[

1 1 2
]

. L1 and L2 are the same as gs and gφ from

Equation (2.15), respectively. L3 is computed as the Lie bracket of of L1 and L2,
i.e.,

[L1,L2] = JL2
L1 − JL1

L2. (3.8)

where Jx is the Jacobian matrix of vector x.
The special characteristic of the Reeds-Shepp case that makes it possible to gen-

erate a set based on that, is that the vectors only depend on θ. Given a number of
samples n that we want to generate we can compute

ε =

(

2πρ2

n

)

1
4

. (3.9)

34

3.1 Deterministic Sampling for Motion Planning

(a) ρ = 0.1, n = 1500 (b) ρ = 0.25, n = 1500 (c) ρ = 1.0, n = 1500

Figure 3.2: Resulting samples when using Poccia’s generation procedure for differ-
ent parameter combinations. The color indicates the orientation of the
sample.

Based on ε we can then compute the number of different θ coordinates by nθ =
⌊2πρε + 0.5⌋ (+0.5 to round to the next integer). From that the θ coordinates of the
samples are given by θ = kεw1 − π, k = 0, ..., nθ − 1. For each of these values of θ
we add a grid with its axes given by L1 and L3, i.e., an orthogonal grid, rotated by
θ. Additionally the step size in this grid is given by εw1 and εw3 along L1 and L3,
respectively. Note that due to the rotation the final set might have slightly more or
less samples than the originally desired number of samples n. Figure 3.2 shows the
2D projection of some sets for n = 1500 and different turning radii ρ.
It should be noted that Poccia’s method only provides a set, not a specific order

at which the samples should be taken or any incremental way of picking the samples.
Relating that to the termination criteria defined in Chapter 2 the best way to use
the samples is with termination after a fixed number of sample attempts nall irre-
spective of whether they are in collision or not. Time-based and valid samples-based
termination have the risk of either running out of samples (which can be prevented
by precomputing a large enough set), but also require some sorting at which the
samples should be picked. Note, also that precomputing a large enough set is basi-
cally prevented by the fact of not having a good order of picking the samples. This is
because by, for example, generating a dense set and randomly picking samples from
it, we lose the whole beneficial structure of the set when only a subset is actually
used. As described in Section 4.2, our approach generates a sorted set, which has
the same downside of potentially running out of samples, but since it has a fixed
order, precomputing enough samples works much better than in the case of Poccia’s
method.
Finally, Poccia also provides the deterministic versions for Schmerling’s theorems

on optimal sampling-based motion planning under differential constraints for both

35

3 Related Work

the driftless control-affine case [15] as well as the linear case with drift [14]. Note
the interesting relation between all of these papers. Similar to how Janson [20]
provides the deterministic version of Karaman’s work [2], Poccia [36] provides the
deterministic version of Schmerling’s work [14, 15] which in itself is an extension of
Karaman’s work [2] to systems with differential constraints. There is also another
related paper by Karaman that covers optimal nonholonomic motion planning using
RRT* [40].
The influence of discrepancy was also discussed by LaValle [35]. He argues that

discrepancy can be of merit in case of axis aligned problems, i.e., cases in which
features of the map align with the space boundaries. Clearly such axis alignments
seem arbitrary and can easily be solved by applying random rotations to either
the map or the sampled points. This can also be seen by the fact that the metric
itself as specified in (2.20) depends a lot on the chosen range space. For the typical
axis-aligned rectangles case, obviously simply rotating the sample set would already
decrease the discrepancy, without actually changing the regular characteristic of a
set. Also, choosing a different range space will yield completely different numbers.
Due to these reasons discrepancy will not be further considered, but the issue of axis
alignment should be kept in mind to prevent rare worst-case scenarios.
Prior to the more theoretically focussed work by LaValle, Branicky already showed

empirically the advantage of using Hammersley or Halton samples instead of i.i.d.
samples [41]. Similar to our optimization approach there have been a few more at-
tempts to find ways of generating optimized samples for different spaces. Lindemann
provides sequences for the most common state spaces in robotics [42]. Specifically
for SO(3) Yershova published two different approaches [43, 44]. There has also
been some work in derandomizing the RRT-based motion planners [45, 46] by us-
ing Voronoi regions. A more recent publication by Khaksar [47] is quite similar to
our approach, but still uses a probabilistic optimization scheme, basically skipping
samples that are in proximity to other samples. In addition it does not consider
differential constraints.

3.2 State Lattice-Based Approaches

The general idea of state lattice-based planning was already introduced in Section
2.4.3. Here we give an overview over the literature that can be found in this area for
both the general idea and more specifically for the generation of motion primitives.

A lot of work in this area was done by Pivtoraiko [48, 49, 50, 51, 52]. In his early
work of 2005 [49] he coined the terms forward and inverse primitive generation. The
forward approach is based on sampling in control space to generate primitives, while
the inverse approach is based on choosing the goal pose and solve an optimal control
problem to connect the initial state with it.

36

3.2 State Lattice-Based Approaches

As noted before in Section 2.4.3, generally the forward approach will lead to non-
lattice primitives. Bicchi looked into how the quantization of the control space
relates to whether the reachable sets become discrete or dense (see our discussion in
Section 2.4.3) [53]. This idea was applied to the N-trailer vehicle model by Pancanti
[54].
Frazzoli introduced the idea of using motion primitives [55], calling the primitives

maneuvers instead. He advocates for the use of the inverse approach to generate
these maneuvers. The most similar framework of state lattice-based motion planning
to the one we use was introduced by Pivtoraiko [52]. This original work mostly
focussed on the general idea of generating motion primitives via an inverse approach
such that a convenient discretization of the configuration space is obtained. He
extended the work, introducing the idea of a heuristic look-up table and a first
Manhattan distance-based primitive generation algorithm [49]. A more in-depth
description of the heuristic look-up table is given by Knepper [56] and Pivtoraiko
[57].
An example for the approximation-based paradigm that we have introduced in

Section 2.4.3 is the work by McNaughton [58]. A theoretical framework that con-
siders such approximation is provided by Chen [59].
Many extensions to this framework have been proposed. As noted above, Knepper

introduced a heuristic look-up table to state lattice-based motion planning [56]. The
idea behind this approach is to precompute the optimal paths in free space given
the primitives and use this information to get a more accurate heuristic for the A*
search. Pivtoraiko [60] introduced the notion of graduated fidelity, that allows to
have different resolutions of primitives depending on the proximity to the robot.
Another extension to allow for anytime planning was proposed by Gonzalez [61] and
multiple ways of handling dynamic environments have been proposed by Kushleyev
[62], Andersson [63] and Ziegler [64]. An extension to multi-robot systems was
proposed by Cirillo [65]. Furthermore Butzke [66] proposes an interesting approach
that adds controller-based motion primitives (i.e., follow wall or follow street). Such
a paradigm would for example allow seamless planning between navigation on streets
(based on controllers) and a parking lot (based on primitives).
Sakcak introduced an RRT-like approach that includes motion primitives resulting

in a planner similar to state lattice planners [67].
Additionally to the previously mentioned work there is a wide-range of publi-

cations aiming at specific applications: planetary rovers [68, 69, 70], micro-UAVs
(unmanned aerial vehicles) [71], 2-trailer systems [72], autonomous driving [73], au-
tonomous trucks [74], quadcopters [63] and airplanes [75].
The surveyed literature shows the high practicability of this approach due to its

low computational cost and because it enables many different optimization options
such as bidirectional planning [76], offline precomputation [56], and path repairing
[71].

37

3 Related Work

A few papers aim at specifically optimizing the set of motion primitives. Green
introduces the notion of dispersion for paths [77], which measures the similarity of
two primitives by integrating the area between the two primitives and attempting
to maximize this metric. The intuition behind this is that primitives which go
through a similar area will have increased probability to both be in collision, while by
maximizing the difference between the primitives we increase the probability of one
primitive to be collision-free. Recently, Botros introduced the notion of t-spanning
[78]. This approach assumes a known grid and tries to find a set of primitives,
such that all grid cells are connected with primitives, in a way that the resulting
path length between any two vertices is not more than t-times bigger than the
optimal path length. Finally, Pivtoraiko proposed multiple algorithms to generating
motion primitive sets: a simple one, based on the Manhattan distance [52] and a
more complex one based on D* decomposition [76]. A recent trend for primitive
generation are learning-based approaches [79].

3.3 Steering Functions

Finally, we want to give an overview of available steering functions that are necessary
for the optimization method introduced in the next section. In addition such steering
methods can be used in an inverse motion primitive generator.
The first optimal steering function was published by Dubin for cars that can only

go forward [11], the Reeds-Shepp car that we introduced in Section 2.3.1 was pub-
lished by Reeds and Shepp [12] with more details being provided by Sussmann [10]
and Soueres [13]. The Dubin’s car was also generalized to the 3D case by Chitsaz [80].
For the popular differential drive there are two kinds of optimal steering functions.
The first by Balkcom [81] considers time-optimal trajectories with velocity-bounded
wheels and the second by Chitsaz [82] finds the trajectories with the minimum wheel
rotation, which in many cases will be equivalent to the most energy efficient trajec-
tory. Finally, for a special omnidirectional robot Balkcom also published an optimal
steering function [83]. An attempt to generalize finding optimal paths for car-like
systems was published by Furtuna, but it only characterizes the type of paths with-
out explicitly finding the trajectories [84]. Finally, for all other systems in which
no analytical optimal steering function exists, numerical optimization can be used
[85, 86].

38

4 Method

In this chapter we introduce the main contribution of this work. First, in the context
of nonholonomic deterministic motion planning we show how dispersion links to
resolution completeness via time-limited reachable sets. Based on this, we then
introduce an optimization approach which can be used to precompute samples that
optimize the dispersion for systems with a known optimal and symmetric steering
function.
Subsequently, we describe a general framework for state lattice planners, which

have already been introduced in Section 2.4.3 and 3.2. The state lattice framework
naturally connects to the roadmap completeness proof, which can be applied again
to proof completeness for the state lattice planner. Additionally we introduce an
alternative way of proving completeness, by introducing δ-completeness, a property
for the set of motion primitives that implies resolution completeness.
Both, the dispersion based-proof and δ-completeness can be used to motivate

primitive generation schemes, which we detail in Section 4.3.2.
Interfaces for all approaches introduced in this section were implemented for the

Open Motion Planning Library (OMPL) [21]. The optimization scheme that is
described in Section 4.2 was implemented in Python with the resulting precomputed
set being usable inside OMPL.

4.1 Differentially Constrained Deterministic Motion

Planning

In general the most valuable property of deterministic motion planning is ensuring
both asymptotic optimality as well as resolution completeness (see Theorem 3.1 for
the Euclidean case). Having both of these, we can be sure that paths going through
corridors with certain clearance will be found and that the cost is bounded by these
solution paths with certain clearance (see Theorem 5 for the Euclidean case).
To extend the Euclidean framework from the literature to differentially con-

strained motion planning, we need to introduce a new notion of clearance, that
can then be used to define resolution completeness for differential motion planning.
Similar ideas have also been used by Schmerling [14, 15] and Poccia [36]. This is
a straightforward extension of Definition 5 to reachable sets, defined by a distance
function dist.

39

4 Method

Definition 11. The δdist-clearance of a path σ is defined by1

δdist(σ) = sup{r ∈ R |Rdist(x, r) ⊆ Xfree ∀x ∈ σ([0, 1])}. (4.1)

Based on this, the δdist-clearance of a query γ is defined by

δdist(γ) = sup{δdist(σ) |σ ∈ Σγ}. (4.2)

We can use this definition of clearance to prove resolution completeness for general
systems (potentially differentially constrained, nonholonomic, etc.) as long as they
are symmetric and an optimal steering function is available.

Theorem 6. Given a set of samples S with known dispersion d̃dist and considering
symmetric systems with optimal steering function, Algorithm 2 with a connection
radius r > 2d̃dist solves all planning queries γ with clearance

δdist(γ) > 2d̃dist. (4.3)

Proof. To see this, first note thatR(x, r) for optimal steering functions, is equivalent
to time-limited reachable sets of the system. Hence, trajectories from x to any
other point in R(x, r) will also be fully contained in R(x, r). Given a query γ with
clearance δ(γ) ≥ 2d̃dist, there exists a solution σ with R(si, 2d̃dist) ∈ Xfree, ∀si ∈
σ([0, 1]). First, note that due to the dispersion definition, there must be a sample of
S in both R(xinit, d̃dist) and R(xgoal, d̃dist). Thus it is possible to connect the start
and goal configuration to the roadmap. It remains to show that a dist-clearance of
δdist(γ) ≥ 2d̃dist is sufficient to find a path from xinit to xgoal. Let q0 and qN denote
the samples that xinit and xgoal are connected to, respectively. By taking s1 along
the path σ and such that q0 lies on the border of R(s1, d̃dist) we see, due to the
dispersion definition in Equation (2.18), there must be another sample inside this
reachable set, denoted by q1. At this point we only know that the path from q0 over
s1 to q1 must be collision-free. Since only q0 and q1 are known, we require a factor
of 2 in the clearance (i.e., 2d̃dist in Equation (4.3)), which ensures that the path
from q0 to q1 is collision-free. To see this, note that due to the system symmetry
both R(q0, d̃dist) and R(q1, d̃dist) must be contained in R(s1, 2d̃dist) ⊂ Xfree. We
also know that the intersection R(q0, d̃dist) ∩ R(q1, d̃dist) contains s1 and is thus
nonempty. The trajectory from q0 to q1 must pass through this intersection and
is hence collision-free. The same idea can now be repeated until the path to qN is
found. The idea of the proof is visualized in Figure 4.1. �

1See Definition 10 and the related discussion for the definition of Rdist.

40

4.2 Optimized Sampling Sequence

si+1

qi+1

qi

xinit

xgoal

Figure 4.1: Visualization of the proof of completeness. si+1 is placed along the
(unknown) path of maximum clearance σ such that qi lies on the border
of R(si+1, d̃dist). Since R(qi, d̃dist) and R(qi+1, d̃dist) overlap and are
fully contained in R(si+1, 2d̃dist) the path from qi to qi+1 is collision-
free.

4.2 Optimized Sampling Sequence

In the last section we showed that it is possible to define a distance metric that
extends the dispersion-based analysis in Euclidean space to differentially constrained
systems for which a distance metric can be defined. Next, we introduce a procedure
that numerically optimizes this dispersion metric. It should be noted that this
approach actually gives a (limited-length) sequence not a set of fixed size. In general
it is possible to find improved sets when fixing the number of samples a priori, but
those sets will then have worse dispersion if only a subset of them are taken.

Greedy dispersion optimization

The procedure outlined in the following can be used to precompute a sequence of a
fixed number of samples. It requires the resolution of the grid, the distance metric,
and the size of the environment. Since the accuracy of the algorithm is based on the
resolution, the number of grid cells should at least be an order of magnitude larger
than the desired number of samples. Depending on the system it might be feasible
to set a different resolution for different dimensions.

Algorithm 6 shows the general flow of the algorithm in its most basic version. The
tensor D is a D-dimensional (D is the dimension of the space) tensor that has one

41

4 Method

entry per grid cell. In the initial step (line 2) the matrix is initialized with∞. Next,
we pick samples until the desired number of samples nall have been found (lines 3–7).
This is done by greedily picking the sample at the grid cell with the largest distance
at that iteration. After picking the sample, the distance tensor is updated to take
into account the newly picked sample. Hence, by construction the distance tensor
keeps track of the current distance of the center of each cell to the closest sample.
Algorithm 7 shows the general idea behind UpdateDistanceTensor. Basically,
we iterate over all grid cells and adjust the cell value in case the new sample x has
a smaller distance than the currently stored value (line 4).

Algorithm 6 Greedy dispersion optimization

1: procedure DispersionOptimization

2: D ←∞
3: while |S| < nall do

4: x← argmaxcDc

5: UpdateDistanceTensor(D,x)
6: S ← S ∪ {x}
7: end while

8: end procedure

Algorithm 7 Distance tensor update

1: function UpdateDistanceTensor(D,x)
2: for c in D do

3: d← dist(c,x)
4: Dc ← min(d,Dc)
5: end for

6: end function

Example 4.1. A simple case to test the algorithm is the Euclidean case in which
the distance function is given by the Euclidean distance as

dist(a, b) = ||a− b||2. (4.4)

Figure 4.2 illustrates the progression of the algorithm for X = [0, 1] × [0, 1]. Note
that the first sample is placed randomly, since the whole distance tensor is initialized
with ∞. Note that many samples are placed right next to the border.

Modified dispersion optimization

One problem with the algorithm in its current form is that there is a high possibility
that samples will be placed on, or more specifically up to the grid resolution close,

42

4.2 Optimized Sampling Sequence

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) n = 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) n = 5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) n = 150

Figure 4.2: Progression of the distance matrix after the update step. The red dots
show the samples so far and the underlying color shows the distance
(note that this color is scaled differently for each plot).

the border of the space. This can also be seen in Figure 4.2(d). While this is
generally coherent with the classical dispersion definition from Niederreiter [27] as
given by (2.18), it poses a problem for motion planning as the boundary of the
space is typically considered as an obstacle and thus all samples on the border will
be discarded in the planning if the robot is not a point robot1. One way to prevent
this, is to adjust the definition of dispersion to also require the reachable set to be
fully contained in the space, i.e., Rdist(x, r) ∈ X , instead of just x ∈ X , which yields
the modified dispersion metric

d̃dist = sup{r > 0|∃x ∈ X with Rdist(x, r) ∩ S = ∅ ∧ Rdist(x, r) ⊆ X}. (4.5)

Indeed it is mentioned by LaValle [35] in the proof of completeness that the balls
should be fully contained inside the set, without adjusting the dispersion metric
specifically. Figure 4.3 visualizes the difference between the two metrics. Note that
the completeness proof from Theorem 6 holds regardless of whether the dispersion
from Equation (2.18) or the modified dispersion from Equation (4.5) is used.
One way of adapting Algorithm 6 to optimize Equation (4.5) instead, is to initialize

D with the distance of the cell to the closest border. By doing so D not only tracks
the distance to the closest sample, but either the distance to the closest sample or
the distance to the closest border, whichever is smaller. If it is easy to compute the
distance to the border, such an initialization is optimal. On the other hand, this
requires an additional function DistanceToBorder, which might not be available
for more complicated systems2.

An alternative, more involved approach, is given by Algorithm 8, which is based
solely on having a distance function dist. The algorithm works by picking a random
sample (line 2) and prior to adding it to the set of samples S, we first check if a border

1Note that this depends on the topology and collision model of the robot.
2For example, in the Euclidean case it is easy to compute the distance, while for the Reeds-Shepp

car it is not possible.

43

4 Method

d2

(a) Classic dispersion

d̃2

(b) Modified dispersion

Figure 4.3: Comparison between classic dispersion (2.18) and the modified dispersion
metric (4.5). The red circles indicate that the balls close to the boundary,
now must be fully included in the bounded set and thus d̃2 < d2.

point would be affected via the call to AffectedBorderPoint (see Algorithm 9),
which checks if UpdateDistanceMatrix would change any border point and if it
does, return the affected border point, without affecting D in any way. If no border
point is affected, we proceed as usual, by updating the distance matrix and adding
the sample to the set (lines 7–9). If it is, we perform an update step on the border
point, but we are not adding the border point to the set of samples (lines 10–11).
Similar to before we continue by picking the sample with the largest distance in the
distance tensor D until we have found the desired number of samples nall.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) n = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) n = 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) n = 9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) n = 100

Figure 4.4: Progression of the distance matrix after the update step for the modified
algorithm. The white dots show the samples so far while the white
crosses show the processed border samples.

44

4.2 Optimized Sampling Sequence

Algorithm 8 Modified dispersion optimization algorithm

1: procedure ModifiedDispersionOptimization

2: D ←∞
3: x = U(X)
4: S ← {}
5: while |S| < nall do

6: b← AffectedBorderPoint(D,x)
7: if b=None then

8: UpdateDistanceTensor(D,x)
9: S ← S ∪ {x}

10: else

11: UpdateDistanceTensor(D, b)
12: end if

13: x← argmincDc

14: end while

15: end procedure

Algorithm 9 Affected border check

1: function AffectedBorderPoint(D,x)
2: for c in D do

3: if dist(c,x) < Dc ∧ IsBorderPoint(c) then
4: return c

5: end if

6: end for

7: return None
8: end function

Algorithm experiments

We will next present two experiments, which confirm numerically the efficacy of the
algorithm in generating samples with lower dispersion than other approaches (i.e.,
i.i.d. and Halton). We show these experiments here and not in Section 5, since the
two following experiments are not performed in any motion planning context and
only aim to empirically show the potential in optimizing the dispersion.

Experiment 1. (Euclidean) To ensure that the general idea of the algorithm works,
sequences of samples from different samplers have been generated and numerically
the progress of the dispersion has been calculated. First, we have a look at the Eu-
clidean case, for which Figure 4.5 shows the sets as well as the dispersion progression
(i.e., the dispersion after n samples). Clearly the optimized sequence outperforms
both i.i.d. and Halton samples.

45

4 Method

0 0.5 1

0

0.5

1

(a) i.i.d.

0 0.5 1

0

0.5

1

(b) Halton

0 0.5 1

0

0.5

1

(c) d̃2 optimized

0 200 400 600 800 1,000

0.0316

0.1

0.316

n

d̃
2

i.i.d.
Halton

d̃2 opt.

(d) d̃2 progress

Figure 4.5: Comparison of different sets of samples for X = [0, 1]× [0, 1]. Each set in
(a)–(c) contains n = 1000 samples. (d) shows the modified dispersion d̃2
after a certain number of samples n. It can be seen that the optimized
sequence consistently yields a lower dispersion than the low-dispersion
Halton sequence or the i.i.d. samples.

Experiment 2. (Reeds-Shepp) To show the viability of the algorithm for nonlinear
distance metrics the optimized sampling sets for the Reeds-Shepp system are shown
in Figure 4.6. Again we see a clear advantage of the optimized sequence against
both i.i.d. as well as Halton samples.
An important metric for this case is the ratio between the environment size and

the turning radius. If the environment is much larger than the turning radius the
set will look similar to the Euclidean set. If the environment has a similar size as
the turning radius the sets structure will be mostly determined by the differential
constraints of the system. This difference is because for the highly constrained case,
the distances between the samples is always in the same ballpark as the minimum
turning radius and thus multiple maneuvers are required to connect them. Con-
versely if the environment is large, the turning maneuver can become so small in

46

4.2 Optimized Sampling Sequence

comparison to the full path, that the optimal path between two points basically
looks like a straight path (as long as the points are not close to each other). A
comparison for different ratios η = rmin/wenv, where rmin is the minimum turning
radius and wenv is the edge length of the environment, is shown in Figure 4.7.

0 0.5 1

0

0.5

1

(a) i.i.d.

0 0.5 1

0

0.5

1

(b) Halton

0 0.5 1

0

0.5

1

(c) d̃rs optimized (η = 1.0)

0 200 400 600 800 1,000

0.398

0.631

n

d̃
rs

i.i.d.
Halton

d̃rs opt.

(d) d̃rs progress

Figure 4.6: Similar analysis as shown in Figure 4.5 for the Reeds-Shepp case. The
color indicates the orientation of the sample. Again the optimized se-
quence, clearly outperforms Halton and i.i.d. samples. Comparing Fig-
ure 4.2(c) with (c) the strong influence of the distance function on the
optimized set can be seen.

Efficiency considerations

Since the sample optimization is computationally quite expensive, that is, it has a
computational complexity of O(nall · N), where nall is the number of samples and
N is the number of grid cells. Since both the number of grid cells and number of
samples in practice are often exponential in the dimension the runtime is practically
exponential in the dimensionality D of the space.

47

4 Method

η = 1.0 η = 0.25 η = 0.1 η = 0.05

n = 100

n = 500

n = 1000

n = 5000

Figure 4.7: Resulting optimized sets for different ratios η = rmin/wenv and number
of samples n. Clearly the samples adjust to the radius and converge
more towards a Euclidean sets for small ratios.

To increase the number of dimensions that are practically computable we will
propose a number of efficiency improvements, that make the computation feasible
for a number of practically relevant systems.
The first is to apply a flood-fill algorithm to traverse the grid and only extend

nodes if the distance is smaller than the previous distance. Figure 4.8 illustrates
this approach. In addition to this classical flood-fill approach another modification
based on that is a precomputed flood-fill, which precomputes the traversed cells in
layer-like fashion as shown in Figure 4.9. Generally such flood-fill approaches are
reasonable for cases in which the dynamics are not highly nonlinear or discontinuous,
since this approach basically works due to limited reachable sets being connected.

48

4.2 Optimized Sampling Sequence

For discontinuous or highly complex reachable sets the gridded approximation in
conjunction with the flood-fill might cause errors in the optimization approach.

Another possibility is to only compute the distance function once and keep reusing
this result afterwards. This approach was not implemented, but we want to state the
general idea as a possible extension. Especially for nonlinear, more complex systems
like the Reeds-Shepp distance lots of redundant computation can be avoided. In
addition one could also use such an approach when no analytic steering function is
available by numerically optimizing the trajectory in free-space. It should be noted
though, that such an approach is mostly feasible if some invariance characteristics
of the space can be exploited (e.g., translational invariance), to limit the number of
optimization problems to solve.

(a) 1 check (b) 2 checks (c) 10 checks (d) 36 checks

Figure 4.8: Illustration of the flood-fill algorithm that can be used to speed up the
optimization. An eight-neighborhood is used to expand the vertices.
Note that by doing so, we also get back to previously checked cells or cells
already in the queue. While this is only a small cost in lower dimensions,
in higher dimensions this can have a big influence on the run time of the
algorithm. The precomputed flood fill that is illustrated in Figure 4.9
prevents this. The blue cells are cells for which no expansion is performed
(which is only realized, once we reach it), the dark gray cells are fully
handled, the light gray cells are queued to be processed but have not
been expanded yet and the white cells are untouched so far. The arrows
visualize the expansion procedure.

49

4 Method

(a) 1 check (b) 9 checks (c) 25 checks (d) 49 checks

Figure 4.9: Illustration of a flood-fill variation the uses a precomputed layered neigh-
bor list, to prevent the repeated checking of already traversed cells. Es-
pecially for high-dimensional spaces such an approach can speed up the
optimization immensely. Only once all the cells in a layer have lower
cost the algorithm stops.

4.2.1 Asymptotic optimality proof

Next, we show that the optimization algorithm reaches the same asymptotic dis-
persion for all driftless control-affine systems as Poccia’s set reaches only for the
Reeds-Shepp system. For the special Euclidean case, we show that the algorithm
reaches the same asymptotically optimal dispersion as for example the Halton se-
quence. The same analysis that we perform here can be applied for many other
systems, which shows theoretically that the optimization approach gives good re-
sults for a wide range of different spaces.
Throughout the discussion we assume that the distance function dist is symmetric

and optimal. Also note that R(x, r) denotes the open reachable set of cost (i.e., time
or distance) r at x.

Theorem 7. Under the assumption that the discretization of the space does not
influence the placement of the samples, the dispersion of the set of samples S after
n samples have been picked by Algorithm 6 can be bounded by

nV (R(x, dn/2)) ≤ V (X) (4.6)

where dn denotes the dispersion defined for a distance function dist as in Equation
(2.18). This yields for the D-dimensional Euclidean case an asymptotic behavior of

dn ∈ O
(

n−1/D
)

(4.7)

and for the driftless control-affine case

dn ∈ O
(

n−1/D̃
)

(4.8)

50

4.2 Optimized Sampling Sequence

with D̃ =
∑D

i=1wi, where wi are the weights of the boxes approximating the reach-
able sets for driftless control-affine systems (see ball-box theorem [37, 87]).

Proof. To proof the asymptotic behavior of the algorithm, consider the case in which
the discretization of the space has no effect on the placement of samples. Further we
introduce some additional notation. Let dn denote the dispersion when n samples
have been picked, i.e., |S| = n. For brevity’s sake, we remove the explicit dist from
the dispersion, but it is implied to be the distance function used in the algorithm,
except if explicitly noted.

The key argument to analyze the asymptotic behavior of the algorithm is to realize
that the n-th sample is, by construction, placed such that its distance to the closest
neighbor is dn−1. Due to that, after n samples have been picked, we can note that

dn−1 ≤ min
y∈S\x

dist(x,y) ≤ 2dn−1 ∀x ∈ S, (4.9)

where the second inequality follows from the symmetry and optimality assumption
of dist.
From the first inequality it follows that (note that the ball is open)

R(x, dn−1) ∩ S = ∅ ∀x ∈ S. (4.10)

In addition, again because of symmetry and optimality, the intersection of all balls
of radius dn−1/2 must be empty, i.e.,

⋂

x∈S

R(x, dn−1/2) = ∅. (4.11)

Let V (·) denote the volume of a set. Note that dn ≤ dn−1 and with n samples being
in S we can state that

nV
(

R(x, dn/2)
)

≤ nV

(

⋃

x∈S

R(x, dn−1/2)

)

= nV
(

R(x, dn−1/2)
)

≤ V (X) (4.12)

must hold. To upper bound the dispersion for a number of samples n we would
optimally use an explicit term for the volume V

(

R(x, dn/2)
)

, but if no such term
exists (as for general sub-Riemannian balls), we need to use a lower bound, i.e., by
using the ball-box theorem [37].
We first consider the case of a D-dimensional space X . In that case we get

ncdDn ≤ V (X) (4.13)

and thus

dn ≤
V (X)1/D
c1/Dn1/D

∈ O
(

n−1/D
)

, (4.14)

51

4 Method

which shows that in the Euclidean case, the asymptotic dispersion is optimal.
For the driftless control-affine case we can use the same argument as Poccia [36].

Under the assumption that the system is sufficiently regular we can find a parameter
Amax such that

Boxw
(

x,
dn

2Amax

)

⊆ R(x, dn−1/2) (4.15)

and according to Lemma II.2 by Schmerling [15] the volume is given by

V

(

Boxw
(

x,
dn

2Amax

)

)

=

(

dn
2Amax

)D̃

(4.16)

with D̃ =
∑D

i=1wi. Again we can rewrite (4.12) as

n

(

dn
2Amax

)D̃

≤ V (X) (4.17)

and thus

dn ≤
V (X)1/D̃2Amax

n1/D̃
∈ O

(

n−1/D̃
)

. (4.18)

�

4.3 State Lattice Planner

We now describe a general state lattice planner methodology that has been imple-
mented in OMPL to allow comparison between optimized sampling-based batch-
algorithms like PRM* and FMT*, and the alternative approach to deterministic
motion planning, state lattice planning. Note that this planner is no novel work,
but that this rather represents a general framework that allows many different ap-
proaches to state lattice planning with only minor adjustments. In addition we use
this framework to provide conditions on the primitives such that the framework
provides resolution completeness.

Graph-based state lattice planner

Algorithm 10 shows our generic approach. Figure 4.10 visualizes the general idea
of the planner. Similarly to PRM, the algorithm can be split up into a learning
phase and query phase. During the learning phase (lines 2–21) the algorithm builds
the roadmap, by starting with a single vertex xseed (Figure 4.10(a), lines 2–5) and
expanding the vertex. The extension procedure can be seen in lines 6–21. For each
motion primitive, first we check whether this motion primitive can originate from

52

4.3 State Lattice Planner

this state via PrimitiveCheck, if it can, we have to transform the motion primitive
and get the resulting end vertex when following the primitive σ, starting from xstart

(lines 9–10). The resulting state can additionally be adjusted via AdjustState,
which allows to use approximate lattices (i.e., discontinuous at some resolution). If
this state x̃ is inside the boundaries of the space and has not been added to V yet,
we add it to the set of vertices and add it to the queue Q of states, which still have
to be extended (lines 12–18). This procedure generates a full roadmap inside the
environment bounds, see Figure 4.10(b).
The query phase (lines 22–37) is similar to LazyPRM [22]. First, we use a steering

function to lazily (i.e., without collision checking) connect xinit and xgoal to the
roadmap (Figure 4.10(c), lines 22–27). Afterwards we repeatedly find the shortest
path and subsequently check for collisions along it (lines 28–29). If a collision is found
we remove all the vertices and edges in collision (Figures 4.10(d) and 4.10(e), lines
31–34). If there is no collision along the path, we return it and end the algorithm
(Figure 4.10(f), lines 29–30). Note that depending on the complexity of the collision
checker it might be faster to first test all vertices (and perhaps edges) prior to starting
the lazy planning. The optimal decision here depends on the size of the graph (which
determines the speed of A*), the collision checker and runtime requirements.

53

4 Method

Algorithm 10 Generic graph-based state lattice planner

1: procedure StateLatticePlanner(xinit,xgoal,xseed,P)
2: V ← {x̃seed}
3: Q ← Queue()
4: Push(Q, x̃seed)
5: E ← ∅
6: while Q is not empty do

7: x̃start ← Pop(Q)
8: for σ ∈ P do

9: if PrimitiveCheck(xstart, σ) then
10: xend ← GetEndState(x̃start, σ)
11: x̃end ← AdjustState(xend)
12: if SatisfiesBounds(X , x̃end) then

13: if x̃end not in V then

14: V ← V ∪ {x̃end}
15: Push(Q, x̃end)
16: E ← {(x̃start, x̃end, σ)}
17: end if

18: end if

19: end if

20: end for

21: end while

22: V ← V ∪ {xinit,xgoal}
23: for x ∈ {xinit,xgoal} do
24: for y ∈ Near(x) do
25: E ← E ∪ {(x,y)}
26: end for

27: end for

28: while σ ← ShortestPath(V, E ,xinit,xgoal) is not NoSolution do

29: if (Vcol, Ecol)← GetCollisions(σ) is (∅, ∅) then

30: return σ
31: else

32: V ← V \ Vcol
33: E ← E \ Ecol
34: end if

35: end while

36: return NoSolution
37: end procedure

54

4.3 State Lattice Planner

xseed

(a) Build lattice starting from xseed (b) Final lattice

xinit

xgoal

(c) Add xinit and xgoal (d) Lazy planning 1

(e) Lazy planning 2 (f) Final solution

Figure 4.10: Visualization of the state lattice planner. See text for description.

Implementation design

To understand the design choices it is necessary to have a general overview of how
OMPL modularizes the motion planning problem. Two branches of motion plan-
ning are supported by OMPL: geometric motion planning and control-based motion
planning. Geometric motion planning has no notion of the control space U , while
control-based motion planning performs the whole search in the control space. In-
terestingly, state lattice planning is somewhere between these two branches as the
search is performed in the state space, while the motion primitives include the con-
trol information. This way efficient state space-based heuristics can speed up the
search, while still conforming to the differential constraints.
In Section 2.4.3 we showed that both tree-based and graph-based approaches are

possible. We have decided to create a graph-based approach. The motivation for
this is two-fold. First, it allows the use of sophisticated graph libraries (i.e., Boost
Graph Library [3]) and second, it allows for a lazy roadmap approach in which first

55

4 Method

the graph is built ignoring the collision checks and then, once a query and collision
checker (and thus map) is specified, collision checking and path finding is performed
together. To implement the state lattice planner we provide two components to
OMPL:

• A new state space, that wraps around another state space (reuses the distance
function and state definition) and adds the motion primitives as an extension
to the state space. We call this state space lattice state space.

• A lazy graph-based planner that uses a lattice state space to build a roadmap
considering the motion primitives and plans inside of it.

By separating the design into these two components we separate the idea of motion
primitives from the exact planner. This way it would be straightforward to reuse
such a lattice state space for a tree-based lattice planner as future work.
As hinted at above this framework also works as an initial step towards bridging

the gap between the two separate branches of control-based and geometric motion
planning. While not implemented, it would be a natural extension to now add
interfaces that create motion primitives based on a control state space, but then use
geometric motion planning to solve the problem.

4.3.1 Completeness for state lattice planners

In this section we show how the dispersion-based completeness framework introduced
in Section 4.1 can also be applied for the state lattice algorithm in the previous
chapter. Additionally we introduce an alternative way to prove completeness for our
state lattice planner based on a property called δ-completeness. Both approaches
naturally lead to motion primitive generation schemes, which will be introduced in
Section 4.3.2.
The first key insight is, that the completeness analysis from before can still be

used in the context of state lattice planners. This is because the primitives basically
only provide the connectivity of an orthogonal grid for which the dispersion analysis
can be used. This insight leads to the following theorem:

Theorem 8. Given a set of motion primitives P, generated in a grid with dispersion
ddist with a connection radius

r > 2ddist (4.19)

using an optimal steering function and considering symmetric systems, Algorithm
10 solves all planning queries γ with clearance

δdist(γ) > 2ddist. (4.20)

56

4.3 State Lattice Planner

Proof. This follows directly from Theorem 6, since the motion primitives just repre-
sent a possibility of offline computing the connectivity of the samples, by exploiting
invariance properties of the systems. �

Let us next introduce the notion of δ-complete motion primitives.

Definition 12. A set P of motion primitives is called δ-complete, if for all primitive
origins p ∈ {σP(0)|σP ∈ P} and for all points x ∈ ∂R(p, δ) there exists a primitive
σP ∈ P such that σP(0) = p and σP(1) ∈ R(x, δ) \ p.

Here ∂R denotes the border of the reachable set and σP is a single motion primitive
from the set P, with σP(0) being its start point and σP(1) being its end point.
Figure 4.11 visualizes this notion of δ-completeness for motion primitives. Using
this definition we can now show completeness for the state lattice approach.

p
δ

Figure 4.11: Visualization of the δ-completeness for motion primitives. Two primi-
tives are shown (blue and red), which cover some of the reachable sets
along the border (blue and red shaded areas respectively). For a set
of primitives P to be δ-complete, all reachable sets along the border
must be covered by some primitive. In this example the green set is
not covered yet.

Theorem 9. Given a set of δ-complete, optimal motion primitives P and considering
symmetric systems with optimal steering function, Algorithm 10 solves all planning
queries γ with clearance

δdist(γ) > 2δ. (4.21)

57

4 Method

si+1
qi+1

qi

xinit

xgoal

Figure 4.12: Visualization of the proof of completeness for the state lattice planner.
The key insight is, that due to the δ-completeness (see Definition 12)
of P there will always be a motion primitive leading into the reachable
set around si + 1 (the blue area). In this case the red primitive leads
to the next state qi+1 in this set.

Proof. First, δ-completeness implies that the set of vertices initially generated by
the algorithm will generate a set of vertices with dispersion d ≤ δ. Thus, by using
a connection radius of r > δ (line 24 in Algorithm 10) it is possible to connect
both xinit and xgoal to the roadmap without any collision. Next, we follow a similar
argument as in the dispersion-based completeness proof. Given a query γ with
clearance δ(γ) > 2δ, there exists a solution σ with R(si, 2δ) ∈ Xfree, ∀si ∈ σ([0, 1]).
Let q0 be the state that xinit is connected to. Let s1 be the state along σ such that it
lies on the border of R(q0, δ). Note that such a sample must exist (as long as σ is not
fully contained in R(xinit, δ)), because due to symmetry at least xinit ∈ R(q0, δ) lies
either on the border or inside xinit ∈ R(q0, δ). Now we can use the δ-completeness of
P, as per definition, there must exist a motion primitive that ends inside of R(s1, δ)
and which is collision-free due to a clearance of 2δ around s1 and optimality of the
motion primitive (here we use the same argument as in the proof of Theorem 6,
that a symmetric and optimal path between any two points of a reachable set with
radius δ, will not leave the larger reachable set with radius 2δ). The same procedure
can now be repeated with the end state q1 of the primitive and the next state along
the path s2, until we reach qN which is connected to xgoal. The idea of the proof is
visualized in Figure 4.12. �

58

4.3 State Lattice Planner

4.3.2 Primitive generation

Given the previous proof of completeness, the only thing left is a description on how
to generate the motion primitive set P. To allow a fair comparison we limit ourselves
to motion primitives ending on grid points, i.e., we are not doing any approximations
and get a continuous solution without any approximations. We also assume, that we
have a steering function available to connect start and goal to the graph correctly.
Note though that the advantage of the motion primitive approach is that it does not
require an analytic steering function to be viable (i.e., we could use numeric solvers
to connect start and goal and still enable fast planning via motion primitives).
Both of the following approaches assume that a grid of vertices is given and we

want to find a way of connecting the vertices to achieve a good trade-off between
solution quality and complexity. Generally as a first step for a given grid, the dis-
persion of the grid given a distance function dist should be assessed, since this gives
a lower bound on the achievable completeness (see Theorem 8 and 9). This disper-
sion ddist can then be used to obtain highest efficiency in the following generation
schemes.

Connection strategy-based

The first approach is based on using a connection strategy to precompute the motion
primitives. Similar to the connection strategies discussed in Section 2.4.1 two main
possibilities exist here: a fixed connection radius r or to use k-nearest neighbors to
generate the motion primitives.
In the first case completeness of the state lattice planners is ensured by using

r > 2ddist. (4.22)

In the second case the exact bound for k is not known so far. A good starting
point, if the number of vertices n is known (which is not the case for variable size
environments, which are supported by a state lattice planner in general), is given
by Karaman [2] for the Euclidean case

k > e(1 + 1/D) log(n). (4.23)

Note though, that this is clearly not a perfect strategy yet. First, n is not known
a priori in the general state lattice case (the environment size and primitives define
the number of vertices) and thus the formula is difficult to apply when generating
the motion primitives (without upper bounding n). In addition it seems unnecessary
that k even depends on n, since the density of the samples does not change in the
state lattice approach. Probably the best k depends on the topology of the space
and further theoretical work is required in this direction.

59

4 Method

Given that the primitive computation is performed offline anyways, the better
choice seems to be to use a fixed connection radius, since completeness for this
radius has been theoretically proven (see Section 4.3.1).

Minimal δ-complete primitive set

Next, we propose an alternative connection strategy based on Theorem 8, that tries
to find a minimal set of primitives that ensures δ-completeness.
Algorithm 11 shows the formal description of the approach. As input the algo-

rithm takes the potential grid points G to connect to, the origin points G0 ⊆ G (this
depends for which dimensions invariance can be used, i.e., for the Reeds-Shepp case
these are all the grid points at (0, 0) with all different initial heading directions),
a fine grid for numerically approximating the reachable set Gfine, the desired com-
pleteness δ and finally ε which is used to numerically approximate the reachable
sets. Gfine and ε together define the numerical approximation of the border of the
reachable set as

∂R(x, δ) ≈ Gfine ∩ {R(x, (1 + ε)δ) \ R(x, δ))}. (4.24)

The algorithm is performed for each of the origin states of the grid G0. For each
of these points x0 we need to find a set of δ-complete primitives.

First, we numerically find all border points of R(x0, δ) (lines 3–8). We next check
for each of the grid points of G which border points it covers or equivalently are
inside of R(xgrid, δ) (condition in line 14). The whole process is comprised of lines
9–20, since some additional book keeping has to be done for the next step. The
collection (i.e., set of sets) T is used to keep track of the sets of border points that
are covered by a single grid point. The associated grid point is saved in the mapping
ξ.
The problem that we are left with after this step is to find the minimum number

of grid points, such that all border points are covered. This problem is equivalent
to a minimum set cover problem, which is NP-complete [88], i.e., we ignore the link
to grid points first, and only try to find the minimum set cover of the collection
T and the universe ∂R. Different solvers could be used here, but we use a simple
greedy approach, that picks the set with most border points, remove all the covered
border points, and proceed until all border points are covered (see Algorithm 12
and description below). While this approach does not give an optimal solution, it
empirically seems to work well to compute a set of primitives with low complexity.
The given algorithm is kept general by allowing any minimum set cover algorithm
to be used (line 21). Note that if a δ-completeness of δ is not obtainable with some
grid, some border points will not be part of T and thus no set cover can be found
and we can terminate the algorithm.

60

4.3 State Lattice Planner

Figure 4.13: Visualization of the general idea behind the generation scheme. The
green dots visualize the discrete approximation of the border of the
δ-reachable set ∂R. The black dots are the grid points G. For each
of the grid points we try to find the border points covered by it. The
red circled points visualize this for one grid point and the border points
covered by it. Subsequently we try to find the minimum number of grid
points, such that all border points are covered, which can be formulated
as a minimum set cover problem.

Finally, when we find a set cover, we use the previously stored mapping ξ to obtain
the associated end points and generate the actual motion primitives and add them
to the set P (lines 22–25).
The greedy algorithm that is used to approximate the minimum set cover is given

as Algorithm 12. As input, it takes a collection T and a set of elements U , called
the universe. In each step the algorithm takes the largest set of T (i.e., largest
cardinality in line 4) and adds it to the current cover (line 5). Subsequently the
chosen set is removed from the collection T . Note that in this step, we are not
only removing the set Ttemp itself from T , but also each element t ∈ Ttemp from
each set it appears in from T . This is important, since otherwise the cardinality in
subsequent steps would not correctly take into account the previously chosen sets.
This procedure is repeated until the whole universe U is covered by the union (i.e.,
all the unique elements) of Tcover (see condition in line 3).

61

4 Method

Algorithm 11 δ-complete primitive generation

1: procedure GenerateDeltaCompletePrimitives(G,G0 ⊆ G,Gfine, δ, ε)
2: for x0 ∈ G0 ⊆ G do

3: ∂R ← {}
4: for y ∈ Gfine do

5: if δ < dist(x,y) < (1 + ε)δ then

6: ∂R ← ∂R∪ {y}
7: end if

8: end for

9: T ← {} ⊲ Collection of sets
10: ξ : T → G ⊲ Mapping from T to G
11: for xgrid ∈ G \ x0 do

12: Ttemp ← {}
13: for xborder ∈ ∂R do

14: if dist(xgrid,xborder) < δ then

15: Ttemp ← Ttemp ∪ {xborder}
16: end if

17: end for

18: T ← T ∪ {Ttemp} ⊲ Add Ttemp to collection T
19: ξ(Ttemp)← xgrid ⊲ Link xgrid to Ttemp

20: end for

21: Tcover ← MinimumSetCover(T , ∂R)
22: P ← {}
23: for Ttemp ∈ Tcover do
24: P ← P ∪ {steer(x0, ξ(Ttemp))}
25: end for

26: end for

27: return P
28: end procedure

Algorithm 12 Greedy minimum set cover

1: procedure GreedyMinimumSetCover(T ,U)
2: Tcover ← {}
3: while

⋃ Tcover 6= U do

4: Ttemp ← argmaxTi∈T |Ti|
5: Tcover ← Tcover ∪ Ttemp

6: T ← T \ Ttemp

7: end while

8: end procedure

62

5 Experiments and Discussion

This chapter will first introduce the metrics used to compare the approaches, which
baselines are compared and other parameters relevant to the results. Subsequently,
the results will be shown and discussed. Finally, we provide a discussion of the
relation between probabilistic roadmaps and state lattice planners, highlighting the
close relationship between the two.

5.1 Experiments

5.1.1 Environments

Reeds-Shepp car in 2D grid

The Reeds-Shepp car was already introduced in Section 2.3.1. Planning is performed
in 2D grid maps with a polygonal footprint. The collision checker is visualized in
Figure 5.1. The paths are checked using the same collision checker using a resolution
that ensured no collisions happening in practice. The parameter defining these
environments is η = rmin/wenv as that defines both the Poccia samples and the
optimized samples.

Figure 5.1: Collision checker for the 2D grid environments. The continuous descrip-
tion of the car will be overapproximated by tracing out the outline (red
line), which is checked for any collisions. The black squares indicate the
obstacles, the green squares the checked, obstacle-free cells and the red
square indicates the found collision.

63

5 Experiments and Discussion

To prevent any bias introduced by the maps and to gain more insight into different
characteristics of the algorithm three kinds of maps have been used:

• A subset of the benchmark problems created by Sturtevant [89]. The utilized
maps with their respective names are shown in Figure 5.2. The queries for
these maps have been both handpicked (see Figure 5.2) and randomized. The
main purpose of these maps is to show the applicability in realistic cluttered
environments.

• A set of custom made benchmark maps highlighting special motion planning
cases (see Figure 5.3).

• Random maps 5.4 with small rectangle obstacles, placed randomly to reach
a certain coverage (see Figure 5.4). The main purpose of these maps is to
minimize any bias in the dataset and plan paths of different characteristic.

(a) Berlin_1 (b) Boston_1 (c) Boston_2 (d) Denver_0 (e) Denver_1

(f) Denver_2 (g) London_2 (h) Moscow_0 (i) NewYork_2 (j) Paris_1

(k) Shanghai_0 (l) Shanghai_1 (m) Sydney_2

Figure 5.2: Subset of city maps by Sturtevant [89] used throughout the experiments.
The red (circled footprint) and blue poses indicate the start and goal pose
for the custom scenarios, respectively.

64

5.1 Experiments

(a) Narrow (b) U (c) Double_Bug_Trap (d) Corridors

Figure 5.3: Custom environments for the Reeds-Shepp case.

Figure 5.4: Random grid maps for the Reeds-Shepp case. The maps are generated
by randomly placing small rectangular obstacles until a certain coverage
is obtained. Only queries with a specified minimum cost are used for the
experiments to prevent simple queries from dominating the benchmark
results.

Kinematic chain in the plane

The second environment in which tests have been performed is a simpleD-dimensional
kinematic chain in the plane. Figure 5.5 shows the system and Figure 5.6 shows the
collision checker.
Two kinds of maps have been tested. Random maps, shown in Figure 5.8, and

custom-made maps, shown in Figure 5.7.

5.1.2 Parameters

For all the sampling-based experiments we use k-nearest neighbors as the connection
strategy. We use

k = e

(

1 +
1

D

)

log n (5.1)

as the default k value dependent on the number of samples n, which ensures asymp-
totic optimality in the general case as proven by Karaman [2].
We use either a fixed number of sample attempts (denoted by nall) or a fixed

number of collision-free samples (denoted by nvalid) as our termination criterion.

65

5 Experiments and Discussion

θ0

θ1

θ2 θ3

Figure 5.5: Kinematic chain in the plane. In this case a 4D chain is shown, that is
defined by its four joint angles.

(a) Environment collision (b) Self collision

Figure 5.6: Collision checker for the kinematic chain. Two possible kinds of collisions
are checked. The red circle indicates the collision between the arm and
the environment in (a), and a self-collision of the kinematic chain in (b).

(a) Two_Walls (b) Four_Walls (c) Workspace

Figure 5.7: Custom maps for the kinematic chain case.

66

5.1 Experiments

Figure 5.8: Random maps for the kinematic chain. The maps are generated by
placing 15 walls of length l = 1.5m in random position and orientation
inside the workspace.

We do not use time-based benchmarks, since the results in this case depend heavily
on the exact implementation (i.e., how often do we reload precomputed samples
from the HDD). By using samples as the deciding criterion, we focus on the quality
of the samples, not the implementation, which is the focus of this work.
To assess the quality of the samplers and the motion primitive sets, we use two

metrics:

• success rate after the termination criterion is fulfilled, and

• cost (i.e., path length in m) of the solution.

Additionally, for the randomized, quantitative benchmarks we introduce a new score
metric that tries to capture the general quality of the solution for many random runs.
The metric works by keeping track of a score between every pair of samplers. Assume
two samplers A and B being run on the same n random queries. For each query the
score of the better sampler will be increased by 1 and the score of the sampler with
the worse score will be decreased by 1. If both samplers achieve the same result
(e.g., both fail to find a solution) the score of both remains unchanged. Clearly this
score will generally increase the higher n is. To facilitate the interpretation of the
results, we normalize the final score by

√
n, which would be the standard deviation

of such a score if the winning probability of both samplers for each query is 0.5.
This way, a score of greater than 1, can be interpreted as a significant advantage,
while a score below -1 can be interpreted as a significant disadvantage.

5.1.3 Baselines

To compare the sampling optimization approach to other approaches we use 4 dif-
ferent baselines:

• i.i.d. samples, which is still the default approach of many sampling-based mo-
tion planners,

67

5 Experiments and Discussion

• Halton samples, as a general low-dispersion sequence,

• Poccia, as an optimized set of samples for the Reeds-Shepp case, and

• state lattice approach, as an alternative approach to planning with differential
constraints (see below for more details on the primitive sets P).

For Halton samples we use the first D numbers which are mutually prime as the
base numbers. For Poccia, the procedure described in Section 3.1 has been used to
generate sets of approximately the desired number of samples nall. Note also, that
since Poccia’s set does not provide a sequence by construction, we randomize the
order of the set for the use in OMPL. Additionally, we omit Poccia in cases where we
plan based on nvalid, since Poccia would always be at a disadvantage in such cases.
Finally, in cases in which we compare to the state lattice approach, we also only use
nall, such that the potential maximum number of vertices in the lattice roadmap is
the same as the number of sample attempts from the other samplers.
Since the quality of the state lattice approach depends a lot on the utilized set

of primitives, we compare a number of different sets of primitives. We include
the lattice approach with k-nearest neighbor primitives (k = 20) in Experiment 6.
This conforms with the connection strategy for the other samplers and thus the
complexity of the A* query should be similar. The two primitive sets for this case
are shown in Figure 5.9. In both cases 8 heading angles are used and the grid was
increased for the larger environment to maintain short planning times (2m grid for
an environment size of 50m, 5m grid for a size of 100m).

(a) 2m grid (b) 5m grid

Figure 5.9: Motion primitive sets used in Experiment 6 generates with the k-nearest
strategy with k = 20.

The primitive sets used to analyze the difference between different generation
schemes is shown in Figure 5.10. For the comparison we use some naively generated
sets (a)–(c), which try to avoid cusps, our optimized set (d), a combined set from

68

5.2 Results and Discussion

(a) and (d), shown in (e), and finally a set generated by using a dispersion-based
fixed connection radius (f). Generally, we would expect the biggest set to perform
the best and the smallest set to perform the worst. All sets use the same grid of size
2m with 8 uniform heading angles. For (d), δ = drs was used, while for (f) r = 2drs
was used. drs ≈ 4m was numerically computed for such a lattice of infinite size, by
applying a similar algorithm as the one used for the dispersion optimization (i.e.,
computing the distance tensor without adding any samples).

(a) Naive 1, |P| = 48 (b) Naive 2, |P| = 64 (c) Naive 3, |P| = 96

(d) Optimized, |P| = 90 (e) Combined, |P| = 138 (f) Radius, |P| = 752

Figure 5.10: Motion primitive sets generated by different methods and used through-
out the experiments. All maps use a grid of 2m and 8 uniform heading
angles. See text for further description.

5.2 Results and Discussion

5.2.1 Dispersion optimization

First, we show results comparing the dispersion optimization approach to the other
sampling approaches. We start with qualitative experiments for both environments.

69

5 Experiments and Discussion

We show some results for the city maps for the Reeds-Shepp car and the custom
scenarios for both the Reeds-Shepp car and kinematic chain. Subsequently we show
quantitative results to give an idea of the general performance difference between
the different samplers.

Qualitative

For the qualitative experiments of the Reeds-Shepp car we limit ourselves to the
case η = 0.1, which seems like a practical case (i.e., 5m turning radius in a 50m
environment). Results for other η values are shown subsequently for the quantitative
experiments.

Experiment 3 (Reeds-Shepp car, city maps). Figure 5.11 shows the results on
the maps Moscow_0 and Denver_2. It can be seen that by using the optimized
samples the first solution is found earlier and that the cost is lower than when
using i.i.d. or Halton samples in most cases. Of course such qualitative behavior
depends a lot on the chosen query and map. Thus it is expected that there are also
cases in which the results look reversed. Table 5.1 summarizes the final cost after
nall = 1500 samples for all maps, to give a more complete picture of these results.
Clearly there are also cases in which Halton yields a better cost, but still, in most
cases the optimized samples are best. The fact that the results are not completely
uniform show that random factors like the start and end pose, as well as the obstacle
placement have a large influence on the result. This motivates the more extensive
randomized experiments shown later, which can be interpreted as marginalizing over
obstacle configurations, only analyzing the effect of the samples.

70

5.2 Results and Discussion

i.i.d.

Suc Min Avg Max Halton Poccia d̃rs opt.

Berlin_1 0.00 · · · ∞ ∞ ∞
Boston_1 1.00 62.51 70.07 78.07 66.46 65.10 63.50

Boston_2 1.00 50.98 56.10 70.51 53.15 61.59 58.32

Denver_0 0.96 62.30 70.26 85.45 63.21 63.17 64.24

Denver_1 0.98 48.43 59.39 70.56 53.47 53.51 60.45

Denver_2 1.00 49.07 55.14 64.92 52.73 54.07 50.94

London_2 0.49 87.24 · · 104.97 92.80 ∞
Moscow_0 0.96 53.83 71.98 117.10 63.15 84.00 53.08

NewYork_2 1.00 67.59 70.99 74.99 71.54 69.82 69.02

Paris_1 0.01 167.51 · · ∞ ∞ ∞
Shanghai_1 0.91 78.62 93.79 123.62 91.46 94.73 88.45

Shanghai_0 1.00 52.24 70.56 82.10 71.28 59.11 72.12

Sydney_2 0.86 70.82 81.90 100.73 80.81 74.05 77.08

Table 5.1: Full results for all the city maps for the queries shown in Figure 5.2 and
a fixed number of samples nall = 1500. The best result is highlighted in
bold (ignoring the minimum i.i.d. case). It can be seen that while the
optimized is the best most often, it depends a lot on the exact query,
which set performs the best.

71

5 Experiments and Discussion

0 500 1,000 1,500

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.
Halton

d̃rs opt.

(a) Success rate

500 1,000 1,500

60

80

100

nvalid

c/
m

i.i.d.
Halton

d̃rs opt.

(b) Cost

(c) i.i.d. (d) Halton (e) d̃rs opt.

0 500 1,000 1,500

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.
Halton

d̃rs opt.

(f) Success rate

0 500 1,000 1,500

60

80

nvalid

c/
m

i.i.d.
Halton

d̃rs opt.

(g) Cost

(h) i.i.d. (i) Halton (j) d̃rs opt.

Figure 5.11: Qualitative comparison of different sampling approaches on two maps.
(a) to (e) show the results for Moscow_0 and (f) to (j) show the results
for Denver_2. The resulting paths and sample sets for nvalid = 1500
are shown. The shaded area in the cost progression plots show the
minimum and maximum cost out of 50 i.i.d. runs.

72

5.2 Results and Discussion

Experiment 4 (Reeds-Shepp car, custom maps). Figure 5.12 shows cost and suc-
cess rate progressions for the custom maps from Figure 5.3. The results show, that
the optimized samples find the solution first in all cases, except the U environment.
It can also be seen in the cost progression that it not only finds the first solution,
but also the solution with lowest cost, for small number of samples. In the end
Halton normally catches up and all three samplers converge to the optimum cost.
These results confirm the theoretical advantage of achieving lower dispersion with
the same number of samples.

0 500 1,000 1,500

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

0 500 1,000 1,500

150

160

170

180

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(a) Narrow.

0 500 1,000 1,500

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

0 500 1,000 1,500

100

120

140

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(b) U

0 500 1,000 1,500

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

500 1,000 1,500

120

130

140

150

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(c) Double_Bug_trap

0 500 1,000 1,500

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

0 500 1,000 1,500
60

80

100

120

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(d) Corridors

Figure 5.12: Resulting cost and success rate progression on the custom maps. It can
be seen that in all cases, except U the optimized sequence is the first
to find the solution. Additionally the cost obtained by the optimized
samples is much lower in the range of 200–700 samples, showing that the
narrow corridors giving the shortest path are found with fewer samples
compared to the other samplers, which catch up later.

Experiment 5 (Kinematic chain, custom maps). Figure 5.13 shows the results for
the custom maps for the kinematic chain. The space was {[−π, π]/ ∼}6 (i.e., 6D
with wrap-around) and self-collisions were allowed for these experiments. Compared
with the previous results in the Reeds-Shepp case there is only a slight advantage of
the optimized sequence which finds a solution with the fewest samples in all cases,
but it is difficult to see any clear trend regarding the cost from these examples.
In general there is no theoretically proven advantage of the optimized sequence

over Halton for this case, but even i.i.d. shows good results, although achieving a
success rate of 100% clearly requires more samples except for the simple Two_Walls
map. From that, we can observe the theoretical advantage of deterministic sam-

73

5 Experiments and Discussion

ples in general, but clearly further experiments are required to gain more insight.
Generally this space seems to profit less from the deterministic samples and the
optimization procedure. An interpretation of these results is given in the context of
the quantitative results of Experiment 8.

0 2,000 4,000 6,000 8,000

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

0 2,000 4,000 6,000 8,000

10

12

14

16

18

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(a) Two_Walls

0 2,000 4,000 6,000 8,000

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

0 2,000 4,000 6,000 8,000

15

20

25

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(b) Four_Walls

0 2,000 4,000 6,000 8,000

0

0.5

1

nvalid

S
u
cc
es
s
ra
te

i.i.d.

Halton

d̃rs opt.

0 2,000 4,000 6,000 8,000
6

8

10

nvalid

c/
m

i.i.d.

Halton

d̃rs opt.

(c) Workspace

Figure 5.13: Resulting cost and success rate progression on the custom maps. See
text for description.

Generally all these qualitative results show promising results for deterministic
sampling in general. An additional benefit from the optimization procedure that we
have introduced in Section 4.2 can be observed in both Reeds-Shepp experiments.
Of course, such handpicked examples do not approximate nearly the distribution
of possible queries that a motion planner would generally have to solve and only
give some intuitive indication of possible benefits. Hence, we next go over more
thorough quantitative results to show the benefits when being faced with many
different queries.

Quantitative

Experiment 6 (Reeds-Shepp car, city maps). Table 5.2 shows both, the perfor-
mance score as well as the success rate histograms. For these experiments we also
include the state lattice planner with the two k-nearest neighbor-based motion prim-
itive sets, which are shown in Figure 5.9. The 2m primitives are used in the η = 0.1
case and the 5m primitives in the η = 0.05 case. To allow a fair comparison, the
number of samples of the other planners were adjusted to the same number of grid
samples.

74

5.2 Results and Discussion

Our optimization approach outperforms all the baselines. It can also be seen that
generally Halton clearly performs better than i.i.d. samples, and Poccia’s approach
does not seem to offer any major advantage over Halton. Also looking at the success
rate, we can see that for the more constrained η = 0.1 case, the optimized approach
shows a significant advantage, while for η = 0.01 all approaches, except for the state
lattice planner achieve the same high success rate.
In both metrics, the state lattice approach gives worse results than the other

approaches. There are two possible reasons for this: first, the connection of start
and end are performed in lazy fashion for the state lattice planner. Thus, it can
happen that all the connected vertices are invalid and no further connections are
attempted; second, the placement of samples might be suboptimal, i.e., 8 heading
angles might not be the best choice for the given turning radius and environment
size. This shows a problem with the state lattice approach as arbitrary heading
angles have the problem of not leading on top of grid cells, not allowing for simple,
straight trajectories. Thus finding the right trade off between grid definition and
complexity of the primitives is a difficult problem. Finally, it should be noted,
that a fixed number of vertices, might not be a fair basis for comparison, since
the main advantage of the state lattice approach is the precomputed connectivity,
which will not show in this kind of comparison. Still, given the PRM framework,
this experiment shows, that having freedom in the sample placement, not being
constrained to an orthogonal and regular grid, gives better performance.

Experiment 7 (Reeds-Shepp car, random maps). Table 5.3 shows the scores for
1000 random maps. In all cases the optimized sequence clearly gets the best score,
which again confirms the theoretical advantages in practice. In general the same
trend can be seen for all η values. As expected Poccia also outperforms Halton, which
makes sense, since the set is tailored to the Reeds-Shepp case. Finally, the advantage
of the optimized set seems to be smaller for η = 1.0, this could be because of the
general low success rate for this case (this is because for such a highly constrained
case, nall = 1500 is not high enough to reliably find a result). Figure 5.14 shows the
histogram that still confirms a large advantage of the optimization procedure, but
since so many cases fail, the scores will generally be a bit lower since there is a high
probability for a draw and thus the normalization will decrease the scores.

Experiment 8 (Kinematic chain, random maps). Table 5.4 shows the results.
Looking solely at the scores the optimized approach again gives the best results in
both the identified and non-identified case. On the other hand the success rate shows
another trend. The optimized sequence fails in many cases as soon as the identifica-
tion is removed. The reason for this was investigated via additional experiments and
by looking closer at the generated samples. Due to the modified dispersion, samples
only slowly approach the border of the space. In high dimensions there remains

75

5 Experiments and Discussion

i.i.d. Halton Poccia d̃rs opt. Lattice

i.i.d. · -4.35 -4.20 -6.47 13.06

Halton 4.35 · 0.20 -1.37 14.51

Poccia 4.20 -0.20 · -1.22 15.89

d̃rs opt. 6.47 1.37 1.22 · 16.00

Lattice -13.06 -14.51 -15.89 -16.00 ·

(a) Performance score, η = 0.1, nall = 5000

i.i.d. Halton Poccia d̃rs opt. Lattice

i.i.d. · -5.61 -7.26 -8.12 18.79

Halton 5.61 · -1.10 -2.35 20.83

Poccia 7.26 1.10 · -1.06 21.49

d̃rs opt. 8.12 2.35 1.06 · 21.22

Lattice -18.79 -20.83 -21.49 -21.22 ·

(b) Performance score, η = 0.05, nall = 3200

i.i.d. Halton Poccia Opt. Lattice
0

200

400

600 567 564 543
582

498

83 86 107
68

152

C
o
u
n
t

Success Failure

(c) Success rate, η = 0.1, nall = 5000

i.i.d. Halton Poccia Opt. Lattice

0

200

400

600
617 621 624 617

465

33 29 26 33

185C
o
u
n
t

Success Failure

(d) Success rate, η = 0.05, nall = 3200

Table 5.2: Performance scores and success rate histograms for 50 random queries on
each of the city maps from Figure 5.2 for different η values. The smaller
η the less constrained the movement of the car. A positive value indicates
that the row performed better than the column. See text for description.

quite a large uncovered area around the border of the space 1. From a completeness
perspective this is fine, but for the kinematic chain another factor comes into play:
samples close the border also represent the fully contracted arm, which represents
a very important state to solve many queries as such a configuration is required for
solving many narrow corridor problems for the kinematic chain (i.e., the arm covers
the smallest area). Hence, the usefulness of the samples depends heavily on the
position in the configuration space due to the geometry of the problem. A simple
Euclidean distance function in the joint space does not capture this geometry and
thus the optimization is not as successful as in the Reeds-Shepp case, in which all
positions contribute equally without any assumptions on the queries to solve.
The key takeaway from this experiment is that the choice of distance function

and topology of a problem can heavily influence the effectiveness of the optimization
approach. The distance function should somehow capture how helpful a sample is,

1In this example, when optimizing n = 30000 samples for the non-identified space [−3, 3]6 all
resulting samples will be fully contained in [−2, 2]6.

76

5.2 Results and Discussion

i.i.d. Halton Poccia d̃rs opt.

i.i.d. · -1.08 -1.74 -4.87

Halton 1.08 · -1.08 -4.11

Poccia 1.74 1.08 · -3.10

d̃rs opt. 4.87 4.11 3.10 ·

(a) η = 1.0

i.i.d. Halton Poccia d̃rs opt.

i.i.d. · -2.09 -6.17 -6.26

Halton 2.09 · -4.21 -4.08

Poccia 6.17 4.21 · -1.20

d̃rs opt. 6.26 4.08 1.20 ·

(b) η = 0.25

i.i.d. Halton Poccia d̃rs opt.

i.i.d. · -4.71 -7.62 -10.69

Halton 4.71 · -3.16 -6.70

Poccia 7.62 3.16228 · -2.47

d̃rs opt. 10.69 6.70 2.47 ·

(c) η = 0.1

i.i.d. Halton Poccia d̃rs opt.

i.i.d. · -3.48 -6.36 -11.61

Halton 3.48 · -1.83 -7.15

Poccia 6.36 1.83 · -4.59

d̃rs opt. 11.61 7.15 4.59 ·

(d) η = 0.05

Table 5.3: Performance score for 1000 runs on random maps for the Reeds-Shepp
case and nall = 1500 for all cases. A positive value indicates that the row
performed better than the column. See text for further description.

i.i.d. Halton Poccia Opt.

200

400

600

800

163 187 208
280

837 813 792
720

C
ou

n
t

Success Failure

Figure 5.14: Success histogram for η = 1.0. This shows a generally low success rate
for this case, but also shows the clear advantage when solving difficult
queries with specialized sets. The success rate is lowest for i.i.d., then
increases for Halton (general low-dispersion), increases more for Poccia
(Reeds-Shepp case) and is best for our optimized sequence.

given everything that is known about the environments and queries that should be
solved.

77

5 Experiments and Discussion

i.i.d. Halton d̃rs opt.

i.i.d. · -2.69 -2.28

Halton 2.69 · -1.01

d̃rs opt. 2.28 1.01 ·

(a) {[−π, π]/ ∼}6

i.i.d. Halton d̃rs opt.

i.i.d. · -1.14 -7.78

Halton 1.14 · -7.78

d̃rs opt. 7.78 7.78 ·

(b) [−3, 3]6

i.i.d. Halton Opt.

0

500

1,000
996 996 989

4 4 11

C
ou

n
t

Success Failure

(c) {[−π, π]/ ∼}6

i.i.d. Halton Opt.

0

500

1,000 988 990
882

12 10
118

C
ou

n
t

Success Failure

(d) [−3, 3]6

Table 5.4: Performance score and success rate histograms for 1000 runs on random
maps for the 6D kinematic chain after nall = 30000 samples. A positive
value indicates that the row performed better than the column. While
the score shows a similar trend in both cases, the success rate of the
optimized sequence is worse, especially in the non-identified case. See
text for interpretation of this observation.

5.2.2 Primitive generation

To assess the efficacy of the primitive generation approach that we propose in Section
4.3.2 we want to do a comparison between different primitive sets. The idea here
is to mostly show the general efficacy. More experiments are required to compare
to other generation methods like the ones summarized in Section 3.2. Again we
first show some qualitative results and then results for randomized queries. We are
comparing the six different sets, which are shown in Figure 5.10. A major difficulty
in comparing these primitive sets, is the large difference in computational efficiency.
Since the actual computation time depends heavily on the ratio of vertices to edges,
total number of vertices, total number of edges as well as the difficulty of the query,
it is difficult to compare motion primitive sets in a fair way. Here we decide to use
the same underlying grid for all primitive sets, which generally means, that larger
sets of primitives are expected to outperform smaller sets. On the other hand, if a
smaller set outperforms a larger set, despite it being smaller, we can conclude that
this smaller set should be better than the larger one.

78

5.2 Results and Discussion

Qualitative

Experiment 9. First, we start with the scores on the city maps. Table 5.5 shows
the results for the six different motion primitive sets. As expected the cost of the
fixed radius set is always the lowest, but that is expected, since it is a superset of all
the other primitive sets, so it will at least reach the same or better cost than other
sets. In general the trend that more primitives gives better results is confirmed, but
the optimization approach does not seem to give results. While solving more queries
than Naive 1 and Naive 2, the scores for the solved cases is often worse. Finally,
it can be seen that the combined set of Naive 1 and Optimized yields quite similar
results to Naive 3. Figure 5.15 shows the resulting paths for four different maps.
Only the the radius set clearly finds smaller corridors in comparison to the other
approaches, which mostly differ in unnecessary cusps added along the path.

Naive 1 Naive 2 Naive 3 Optimized Combined Radius

Berlin_1 87.14 77.84 63.12 75.50 66.57 62.68

Boston_1 ∞ ∞ ∞ ∞ ∞ ∞
Boston_2 ∞ 80.94 83.16 88.23 82.06 55.83

Denver_0 ∞ ∞ ∞ ∞ ∞ 118.70

Denver_1 ∞ ∞ 106.73 112.55 108.88 85.54

Denver_2 ∞ ∞ ∞ ∞ ∞ ∞
London_2 ∞ ∞ 54.35 ∞ ∞ 53.23

Moscow_0 71.41 70.67 70.99 74.51 70.99 69.92

NewYork_2 72.44 64.71 72.23 66.21 55.83 49.65

Paris_1 76.59 76.59 76.18 102.74 76.38 69.16

Shanghai_1 80.94 80.94 79.17 84.25 69.01 65.99

Shanghai_0 70.04 70.04 63.35 67.45 65.03 52.09

Sydney_2 62.74 62.03 61.28 73.17 62.74 51.79

Table 5.5: Resulting solution cost on the city maps for the state lattice planner
with six different motion primitive sets. The best result is highlighted
in bold (ignoring the radius case, since it outperforms the other sets by
construction). See text for description.

79

5 Experiments and Discussion

(a) Naive 1 (b) Naive 2 (c) Naive 3 (d) Opt. (e) Comb. (f) Radius

(g) Naive 1 (h) Naive 2 (i) Naive 3 (j) Opt. (k) Comb. (l) Radius

(m) Naive 1 (n) Naive 2 (o) Naive 3 (p) Opt. (q) Comb. (r) Radius

(s) Naive 1 (t) Naive 2 (u) Naive 3 (v) Opt. (w) Comb. (x) Radius

Figure 5.15: Resulting paths for the state lattice planning with different mo-
tion primitive sets on the maps Berlin_1, Denver_1, Denver_2 and
Sydney_2. It can be seen that the most expansive primitive set Ra-
dius is also the only one that finds the narrow corridors for the last
three maps. The other paths mostly differ in slightly different turns
and additional cusps.

Quantitative

Experiment 10. As before we now want to confirm the trend seen from the example
maps in more extensive, randomized experiments. Table 5.6 shows the performance
score for the motion primitive sets on randomized maps. It can be seen that in
general the optimized set performs worse than every other set. Only by combining
it with the simple set we can achieve competitive scores, with Naive 3 still outper-
forming it despite being the smaller set. Hence, clearly the optimization approach
does not help in practice and naive approaches, even without proven completeness,
perform well. The takeaway from this is that the proposed optimization that aims at

80

5.2 Results and Discussion

proven completeness with few primitives does not provide benefits on the achievable
solution cost yet. An open question is whether this is due to insufficient optimization
procedure (see Chapter 6) or whether proven completeness simply does not corre-
late with achieving low cost in the average case. It could also be that the naive sets
actually achieve the same or better completeness without it being explicitly shown.

Naive 1 Naive 2 Naive 3 Optimized Combined Radius

Naive 1 · -9.14 -26.66 20.27 -21.35 -30.80

Naive 2 9.14 · -16.16 24.03 -11.51 -30.67

Naive 3 26.66 16.16 · 27.51 8.16 -30.48

Optimized -20.27 -24.03 -27.51 · -28.14 -30.86

Combined 21.35 11.51 -8.16 28.14 · -30.64

Radius 30.80 30.67 30.48 30.86 30.64 ·

Table 5.6: Performance score for 1000 runs on random maps for the Reeds-Shepp
case and the different motion primitive sets shown in Figure 5.10. A
positive value indicates that the row performed better than the column.
See text for description.

5.2.3 From probabilistic roadmaps to state lattice planning

Finally, we want to discuss the connection between these different approaches to
deterministic motion planning as they are all highly related. The goal of this sec-
tion is to draw the connection between the different methods and put them into
perspective.
State lattice planning, while looking quite different from probabilistic roadmaps

at first sight, is actually very similar. If the motion primitives are designed in such
a way, that they can be continuously connected (i.e., no approximation) in a graph-
based framework (either implicitly defined by an online A* search or explicitly by
precomputing the graph), the primitives will imply an orthogonal grid. For such an
orthogonal grid we can compute the dispersion (i.e., with our proposed algorithm)
and because the start and end have to be connected to this graph, the dispersion
of the grid defines the completeness that can be achieved by a state lattice planner.
Note that since we are constrained to orthogonal grids, this dispersion will in general
be higher than if we optimize the dispersion taking into account the distance metric
of the system.
The motion primitives finally define the connection between the vertices and is

thus highly related to the connection strategy. By precomputing the motion prim-

81

5 Experiments and Discussion

itives with a connection radius defined by two times the dispersion of the grid, we
directly achieve resolution completeness for state lattice planners. Alternatively we
can use our alternative proof of completeness for motion primitives as it allows to
precompute a sparser set of motion primitives while maintaining completeness. Note
that the potential of finding such a sparse set of primitives that gives resolution com-
pleteness is only enabled through the regular, orthogonal positioning of the vertices,
as otherwise primitives could not be precomputed.
Comparing this with PRM using our optimized set of samples, we see that we

require less vertices, but can not use the same sparse connection strategy. Note
that in principle precomputing edge information would also be viable for PRM
with optimized samples, although it would have much higher memory requirements,
since each edge is unique in comparison to the state lattice, in which only the
motion primitives have to be stored. Another advantage of state lattice planning to
the optimization approach is its independency from the environment size, since the
motion primitives can simply be extended until the whole space is covered.
To summarize, state lattice planning can be seen as another roadmap planner, that

uses the invariance existing in many practical systems (i.e., translational invariance)
to precompute connection information (i.e., motion primitives). As we show, this
can be used to precompute more sparse connections, while preserving the same
completeness. The cost to pay is being constrained to orthogonal grids, which means
a higher number of vertices is required to achieve the same resolution completeness.

82

6 Conclusion and Outlook

In this work we showed the viability of using deterministic sampling-based motion
planning to derandomize planners and get non-probabilistic completeness guaran-
tees. Additionally we have introduced an approach to precompute optimized sam-
ples based on a distance function, which allows to skip unnecessary collision checks
during planning and can thus help to speed up planners. We showed in extensive
experiments that the optimized samples outperform all baselines in both cost and
success rate, which confirms the theoretic benefits in practice. The optimization ap-
proach is general only requiring an optimal steering function and is thus applicable
for many practical systems like differential drive and car-like kinematics.
In general it can be said, that there are only few reasons to use i.i.d. samples

nowadays. In this work we only worked with uniformly distributed samples, as such
are important for getting completeness guarantees. Generally using for example
Halton samples in combination with learned distributions to generate determinis-
tic, nonuniform samples seems like a good start to remove randomness from such
approaches as well. Also to keep the completeness guarantees, safety critical sys-
tems might deploy two parallel motion planners (or use interleaved samples), that
on one hand use nonuniform samples to find a solution quickly in most cases, and a
fallback system based on deterministic uniform sampling that provides the required
completeness guarantees.
The greedy optimization approach we propose gives clear benefits for low-dimen-

sional systems, but is quite simple in nature and more complicated approaches would
definitely be thinkable. Examples include optimizing the sample position for a hori-
zon of samples, a graph representation-based approach instead of a grid, to allow
better handling of higher dimension, and investigating the possibility of parallelizing
the approach, since right now, it is a sequential algorithm by nature.
We also showed that a reachable set-based framework can be used to prove resolu-

tion completeness for symmetric and optimal systems, which includes many practical
systems. We used the same framework to prove completeness both for PRM and
state lattice planners, which also clearly shows the relationship between the two.
For state lattice planners this insight can be used to define a sparser condition on
the primitives to reach resolution completeness. While the proposed algorithm, does
not perform well in practice (i.e., higher cost and failure), it requires less primitives
to give the same resolution completeness as a dispersion-based connection radius.
Obviously having proven resolution completeness, must not coincide with achieving

83

6 Conclusion and Outlook

low cost and high success rate. An interesting question is, whether better performing
naive approaches actually give resolution completeness as we defined it and how to
adapt the optimization technique to better capture the characteristics of the state
lattice paradigm (i.e., concatenation of primitives). Therefore, further research is
required in this area. Still, our analysis clearly shows the close relationship be-
tween roadmap and state lattice approaches, showing that the two are practically
equivalent in many situations.

Outlook

Multiple extensions to this work are possible. First, for the optimization approach
many extensions pose both practical as well as theoretical interesting challenges:

Non-symmetric systems We believe that most of the analysis can also be carried
out by combining positive time (i.e., sets of points reachable from a given point
within some time or distance) and negative time reachable sets (i.e., sets of
points, which can reach a given point in some time or distance). This should
allow to extend the optimization to non-symmetric systems as well.

Drift systems Drift systems have the interesting property that time-limited reach-
able sets might not contain themselves anymore. The question is how to define
the reachable sets, steering functions and optimization objective in this case.

Environment agnostic optimization Our approach works by optimizing the sam-
ples for a given environment. In practice the size of the environment might not
be known beforehand. Hence, optimizing samples for arbitrary environments
without sacrificing too much dispersion and efficiency is another interesting
problem.

Non-uniform sampling Integrating priors and increasing the density of samples in
difficult parts of the state space is a very common approach towards efficient
sampling-based motion planning. In light of our approach, the desired property
would be to efficiently decrease dispersion in difficult parts of the state space.
This seems quite related to the previous question of environment agnostic
sampling optimization, which could be seen as the first step in this direction.

Second, for state lattice planners, the results showed that our optimization approach
is not yet sufficient to outperform naive approaches in practice. We suspect the
reason for this to be that we are optimizing for each primitive origin a separate set
of primitives. This ignores the fact that the primitives must work well together to
find paths and thus a joint optimization of all primitives should give better results.
Additionally the fact that new primitives are built by concatenation should also be
incorporated into the optimization.

84

Bibliography

[1] S. M. LaValle, Planning algorithms. Cambridge University Press, 2006.

[2] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The International Journal of Robotics Research, vol. 30, no. 7,
pp. 846–894, 2011.

[3] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide
and Reference Manual. Pearson Education, 2001.

[4] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc.,
1998.

[7] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,”
Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[8] N. Ferrers, “Extension of Lagrange’s equations,” The Quarterly Journal of Pure
and Applied Mathematics, vol. 12, no. 45, pp. 1–5, 1872.

[9] J.-P. Laumond, “Feasible trajectories for mobile robots with kinematic and
environment constraints,” in Proceedings of the International Conference on
Intelligent Autonomous Systems, pp. 346–354, 1986.

[10] H. J. Sussmann and G. Tang, “Shortest paths for the Reeds-Shepp car: A
worked out example of the use of geometric techniques in nonlinear optimal
control,” tech. rep., Rutgers Center for Systems and Control, 1991.

[11] L. E. Dubins, “On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents,” Ameri-
can Journal of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.

85

Bibliography

[12] J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and
backwards,” Pacific Journal of Mathematics, vol. 145, no. 2, pp. 367–393, 1990.

[13] P. Soueres and J.-D. Boissonnat, “Optimal trajectories for nonholonomic mobile
robots,” in Robot Motion Planning and Control, pp. 93–170, Springer, 1998.

[14] E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion
planning under differential constraints: the drift case with linear affine dynam-
ics,” in Proceedings of the IEEE Conference on Decision and Control, pp. 2574–
2581, 2015.

[15] E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion
planning under differential constraints: the driftless case,” in Proceedings of the
IEEE International Conference on Robotics and Automation, pp. 2368–2375,
2015.

[16] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[17] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic motion
planning using any-angle path biasing,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 2775–2781, 2016.

[18] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2997–3004, 2014.

[19] S. Thomas, M. Morales, X. Tang, and N. M. Amato, “Biasing samplers to im-
prove motion planning performance,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1625–1630, 2007.

[20] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based motion
planning: Optimality, complexity, and performance,” The International Jour-
nal of Robotics Research, vol. 37, no. 1, pp. 46–61, 2018.

[21] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,”
IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012.

[22] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation, vol. 1,
pp. 521–528, 2000.

86

Bibliography

[23] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A
fast marching sampling-based method for optimal motion planning in many
dimensions,” The International Journal of Robotics Research, vol. 34, no. 7,
pp. 883–921, 2015.

[24] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[25] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 2, pp. 995–1001, 2000.

[26] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees (bit*):
Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3067–3074, IEEE, 2015.

[27] H. Niederreiter, Random number generation and quasi-Monte Carlo methods,
vol. 63. SIAM, 1992.

[28] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals,” Numerische Mathematik, vol. 2, no. 1,
pp. 84–90, 1960.

[29] A. G. Sukharev, “Optimal strategies of the search for an extremum,” USSR
Computational Mathematics and Mathematical Physics, vol. 11, no. 4, pp. 119–
137, 1971.

[30] J. van der Corput, “Verteilungsfunktionen i & ii,” in Proceedings of the Konin-
klijke Nederlandse Akademie van Wetenschappen, vol. 38, pp. 1058–1066, 1935.

[31] J. H. Halton, “Algorithm 247: Radical-inverse quasi-random point sequence,”
Communications ACM, vol. 7, no. 12, pp. 701–702, 1964.

[32] M. Berblinger and C. Schlier, “Monte Carlo integration with quasi-random
numbers: Some experience,” Computer Physics Communications, vol. 66, no. 2-
3, pp. 157–166, 1991.

[33] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for
robot motion planning,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 7087–7094, 2018.

[34] B. Ichter and M. Pavone, “Robot motion planning in learned latent spaces,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2407–2414, 2019.

87

Bibliography

[35] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relationship
between classical grid search and probabilistic roadmaps,” The International
Journal of Robotics Research, vol. 23, no. 7-8, pp. 673–692, 2004.

[36] E. Poccia, “Deterministic sampling-based algorithms for motion planning under
differential constraints,” Master’s thesis, Stanford University, 2017.

[37] R. Montgomery, A tour of subriemannian geometries, their geodesics and ap-
plications. American Mathematical Soc., 2002.

[38] A. Belläıche, “The tangent space in sub-Riemannian geometry,” in Sub-
Riemannian Geometry, pp. 1–78, Springer, 1996.

[39] R. S. Strichartz, “Sub-riemannian geometry,” Journal of Differential Geometry,
vol. 24, no. 2, pp. 221–263, 1986.

[40] S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for
non-holonomic dynamical systems,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 5041–5047, 2013.

[41] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-randomized path
planning,” in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 2, pp. 1481–1487, 2001.

[42] S. R. Lindemann, A. Yershova, and S. M. LaValle, “Incremental grid sampling
strategies in robotics,” in Algorithmic Foundations of Robotics VI, pp. 313–328,
Springer, 2004.

[43] A. Yershova and S. M. LaValle, “Deterministic sampling methods for spheres
and SO(3),” in Proceedings of the IEEE International Conference on Robotics
and Automation, vol. 4, pp. 3974–3980, 2004.

[44] A. Yershova, S. Jain, S. M. Lavalle, and J. C. Mitchell, “Generating uniform
incremental grids on SO(3) using the hopf fibration,” The International Journal
of Robotics Research, vol. 29, no. 7, pp. 801–812, 2010.

[45] S. R. Lindemann and S. M. LaValle, “Incrementally reducing dispersion by
increasing Voronoi bias in RRTs,” in Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 4, pp. 3251–3257, 2004.

[46] S. R. Lindemann and S. M. LaValle, “Steps toward derandomizing RRTs,” in
Robot Motion and Control, pp. 287–300, Springer, 2006.

88

Bibliography

[47] W. Khaksar, T. S. Hong, M. Khaksar, and O. Motlagh, “A low dispersion
probabilistic roadmaps (LD-PRM) algorithm for fast and efficient sampling-
based motion planning,” International Journal of Advanced Robotic Systems,
vol. 10, no. 11, p. 397, 2013.

[48] M. N. Pivtoraiko, Differentially constrained motion planning with state lattice
motion primitives. PhD thesis, Carnegie Mellon University, 2012.

[49] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via search
in state lattices,” in Proceedings of the International Symposium on Artificial
Intelligence, Robotics and Automation in Space, pp. 1–7, 2005.

[50] M. Pivtoraiko and A. Kelly, “Generating state lattice motion primitives for
differentially constrained motion planning,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 101–108, 2012.

[51] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile
robot motion planning in state lattices,” Journal of Field Robotics, vol. 26,
no. 3, pp. 308–333, 2009.

[52] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning control sets
for constrained motion planning in discrete state spaces,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3231–3237, 2005.

[53] A. Bicchi, A. Marigo, and B. Piccoli, “On the reachability of quantized control
systems,” IEEE Transactions on Automatic Control, vol. 47, no. 4, pp. 546–563,
2002.

[54] S. Pancanti, L. Pallottino, D. Salvadorini, and A. Bicchi, “Motion planning
through symbols and lattices,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, vol. 4, pp. 3914–3919, 2004.

[55] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile
autonomous vehicles,” Journal of Guidance, Control, and Dynamics, vol. 25,
no. 1, pp. 116–129, 2002.

[56] R. A. Knepper and A. Kelly, “High performance state lattice planning using
heuristic look-up tables.,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 3375–3380, 2006.

[57] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Optimal, smooth, nonholonomic
mobile robot motion planning in state lattices,” tech. rep., Carnegie Mellon
University, 2007.

89

Bibliography

[58] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for
autonomous driving with a conformal spatiotemporal lattice,” in Proceedings
of the IEEE International Conference on Robotics and Automation, pp. 4889–
4895, 2011.

[59] P. Cheng, Sampling-based motion planning with differential constraints. PhD
thesis, University of Illinois at Urbana-Champaign, 2005.

[60] M. Pivtoraiko and A. Kelly, “Differentially constrained motion replanning using
state lattices with graduated fidelity,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 2611–2616, 2008.

[61] A. González-Sieira, M. Mucientes, and A. Bugaŕın, “Anytime motion replanning
in state lattices for wheeled robots,” in Proceedings of the Workshop of Physical
Agents, pp. 217–224, 2012.

[62] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient planning in
dynamic environments,” in Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1662–1668, 2009.

[63] O. Andersson, O. Ljungqvist, M. Tiger, D. Axehill, and F. Heintz, “Receding-
horizon lattice-based motion planning with dynamic obstacle avoidance,” in
Proceedings of the IEEE Conference on Decision and Control, pp. 4467–4474,
2018.

[64] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast trajectory plan-
ning in dynamic on-road driving scenarios,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1879–1884,
2009.

[65] M. Cirillo, T. Uras, and S. Koenig, “A lattice-based approach to multi-robot
motion planning for non-holonomic vehicles,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 232–239, 2014.

[66] J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev, “State lat-
tice with controllers: Augmenting lattice-based path planning with controller-
based motion primitives,” in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 258–265, 2014.

[67] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based optimal
kinodynamic planning with motion primitives,” Autonomous Robots, pp. 1–18,
2018.

90

Bibliography

[68] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” The International Journal of Robotics Research,
vol. 26, no. 2, pp. 141–166, 2007.

[69] M. Pivtoraiko, T. M. Howard, I. Nesnas, and A. Kelly, “Field experiments in
rover navigation via model-based trajectory generation and nonholonomic mo-
tion planning in state lattices,” in Proceedings of the International Symposium
on Artificial Intelligence, Robotics and Automation in Space, pp. 25–29, 2008.

[70] A. Rusu, S. Moreno, Y. Watanabe, M. Rognant, and M. Devy, “State lattice
generation and nonholonomic path planning for a planetary exploration rover,”
in Proceedings of the International Astronautical Congress, 2014.

[71] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV motion
replanning for exploring unknown environments,” in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 2452–2458, 2013.

[72] O. Ljungqvist, N. Evestedt, M. Cirillo, D. Axehill, and O. Holmer, “Lattice-
based motion planning for a general 2-trailer system,” in Proceedings of the
IEEE Intelligent Vehicles Symposium, pp. 819–824, 2017.

[73] S. Wang, State lattice-based motion planning for autonomous on-road driving.
PhD thesis, Free University of Berlin, 2015.

[74] M. Cirillo, “From videogames to autonomous trucks: a new algorithm for
lattice-based motion planning,” in Proceedings of the IEEE Intelligent Vehi-
cles Symposium, pp. 148–153, 2017.

[75] A. A. Paranjape, K. C. Meier, X. Shi, S.-J. Chung, and S. Hutchinson, “Motion
primitives and 3d path planning for fast flight through a forest,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 3, pp. 357–377, 2015.

[76] M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state lattice
motion primitives,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2172–2179, 2011.

[77] C. Green and A. Kelly, “Toward optimal sampling in the space of paths,” in
Proceedings of the International Symposium on Robotics Research, vol. 3, p. 1,
2007.

[78] A. Botros and S. L. Smith, “Computing a minimal set of t-spanning motion
primitives for lattice planners,” arXiv preprint arXiv:1903.10483, 2019.

[79] A. Sivaramakrishnan, Z. Littlefield, and K. E. Bekris, “Towards learning
efficient maneuver sets for kinodynamic motion planning,” arXiv preprint
arXiv:1907.07876, 2019.

91

Bibliography

[80] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a Dubins airplane,” in
Proceedings of the IEEE Conference on Decision and Control, pp. 2379–2384,
2007.

[81] D. J. Balkcom and M. T. Mason, “Time optimal trajectories for bounded veloc-
ity differential drive vehicles,” The International Journal of Robotics Research,
vol. 21, no. 3, pp. 199–217, 2002.

[82] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and M. T. Mason, “Minimum wheel-
rotation paths for differential-drive mobile robots,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 66–80, 2009.

[83] D. J. Balkcom, P. A. Kavathekar, and M. T. Mason, “Time-optimal trajec-
tories for an omni-directional vehicle,” The International Journal of Robotics
Research, vol. 25, no. 10, pp. 985–999, 2006.

[84] A. A. Furtuna, D. J. Balkcom, H. Chitsaz, and P. Kavathekar, “Generalizing
the Dubins and Reeds-Shepp cars: fastest paths for bounded-velocity mobile
robots,” in Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 2533–2539, 2008.

[85] C. Fernandes, L. Gurvits, and Z. Li, “A variational approach to optimal non-
holonomic motion planning,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pp. 680–685, 1991.

[86] D. A. Anisi, J. Hamberg, and X. Hu, “Nearly time-optimal paths for a ground
vehicle,” International Journal of Control Theory and Applications, vol. 1, no. 1,
pp. 2–8, 2003.

[87] W.-L. Chow, “Über Systeme von linearen partiellen Differential-gleichungen er-
ster Ordnung,” in The Collected Papers Of Wei-Liang Chow, pp. 47–54, World
Scientific, 2002.

[88] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of
Computer Computations, pp. 85–103, Springer, 1972.

[89] N. Sturtevant, “Benchmarks for grid-based pathfinding,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144 – 148,
2012.

92

	Introduction
	Fundamentals
	Motion Planning
	Sampling-Based Motion Planning
	Planning under Differential Constraints
	Car-like kinematics

	Sampling-Based Planning Algorithms
	Probabilistic roadmap
	Fast marching tree
	State lattice-based approaches
	Other algorithms

	Sampling Theory
	Dispersion
	Discrepancy
	Sampling sequences
	Sampling in motion planning

	Related Work
	Deterministic Sampling for Motion Planning
	State Lattice-Based Approaches
	Steering Functions

	Method
	Differentially Constrained Deterministic Motion Planning
	Optimized Sampling Sequence
	Asymptotic optimality proof

	State Lattice Planner
	Completeness for state lattice planners
	Primitive generation

	Experiments and Discussion
	Experiments
	Environments
	Parameters
	Baselines

	Results and Discussion
	Dispersion optimization
	Primitive generation
	From probabilistic roadmaps to state lattice planning

	Conclusion and Outlook
	Bibliography

