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Abstract. Recently, various methods for 6D pose and shape estima-
tion of objects have been proposed. Typically, these methods evaluate
their pose estimation in terms of average precision and reconstruction
quality in terms of chamfer distance. In this work, we take a criti-
cal look at this predominant evaluation protocol, including metrics and
datasets. We propose a new set of metrics, contribute new annotations
for the Redwood dataset, and evaluate state-of-the-art methods in a fair
comparison. We find that existing methods do not generalize well to
unconstrained orientations and are actually heavily biased towards ob-
jects being upright. We provide an easy-to-use evaluation toolbox with
well-defined metrics, method, and dataset interfaces, which allows eval-
uation and comparison with various state-of-the-art approaches (https:
//github.com/roym899/pose_and_shape_evaluation).

Keywords: Pose estimation · Shape reconstruction · RGB-D-based per-
ception

1 Introduction

We consider the problem of pose and shape estimation on a per-category level.
Classic grasp and motion planning methods often assume that full knowledge
of pose and shape is available, making them difficult to apply with partial sen-
sor information. Estimating the full shape and pose promises to bridge this gap
from partial sensor information to an actionable representation. Although shape
reconstruction itself is sufficient for some tasks, categorical pose estimation ad-
ditionally provides a reference frame. This categorical reference frame could, for
example, further enable alignment of objects and pose-dependent grasp compu-
tation (e.g., an upside-down mug has to be grasped differently from an upright
mug).

Over the last two years, various learning-based categorical pose and shape
estimation methods have been introduced. Most methods are built and evalu-
ated on the two datasets proposed by [26]. The CAMERA dataset is a large
dataset of real RGB-D tabletop scenes with synthetic objects generated on top
of the table. The REAL dataset is a smaller real-world dataset of tabletop se-
quences with objects that have been scanned and tracked for the purpose of

https://github.com/roym899/pose_and_shape_evaluation
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evaluating categorical pose estimation. Notably, both datasets only contain up-
right objects, which opens the question of how well existing methods generalize
to less constrained settings.

To answer this question, we contribute a set of annotations to evaluate un-
constrained 6D pose and shape estimation. Our annotations consist of meshes
and poses for handheld objects of three categories in the Redwood dataset [8].
In that dataset, the objects are freely rotated in front of the camera, and the
orientations vary significantly more than in the datasets by [26].

Most methods evaluate pose estimation by following the same evaluation
protocol as initially proposed by [26]. However, the method in [26] combines mask
detection and pose estimation into a single network and therefore evaluates pose
estimation with average precision (AP), which is a common detection metric.
However, many of the subsequent methods assume the mask to be an input to
their method, making AP an unnatural evaluation metric, as it makes the results
unnecessarily difficult to interpret. Therefore, we propose a set of simpler metrics
that use ground-truth masks and categories to evaluate pose estimation.

Pose estimation with shape reconstruction was first demonstrated by [4] and
[24]. Both methods independently used the chamfer distance as their recon-
struction metric, which is now commonly used by methods performing shape
reconstruction. However, [23] showed that the chamfer distance is not a good
measure of reconstruction quality and other metrics better correlate with per-
ceived reconstruction quality. Therefore, in this work, we advocate for a new set
of reconstruction metrics and propose a new evaluation protocol for both shape
reconstruction and pose estimation.

To summarize, our contributions are:

– a well-defined evaluation protocol,
– a challenging set of novel annotations to evaluate unconstrained pose and

shape estimation,
– a fair evaluation of various state-of-the-art methods, and
– an open source evaluation toolbox for the task of categorical pose and shape

estimation.

2 Related Work

Since the introduction of the BOP benchmark suite [15], much progress has been
made in the task of instance-level pose estimation, where a mesh of the target
object is available. While such pose estimation with known meshes has made
remarkable progress, the more general task of category-level pose estimation has
only recently received more attention. Compared to instance-level pose estima-
tion categorical pose and shape estimation is more difficult due to the large
possible variations in shape and appearance even for a single category.

Wang et al. [26] introduced the first deep learning-based method to address
the 6D pose estimation problem at the per-category level. They introduced two
datasets: a synthetic dataset that combines real scenes with meshes from the
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ShapeNet dataset [3] and a smaller real-world dataset that is mainly used for fine-
tuning and evaluation. Their method is based on the normalized object coordinate
space (NOCS), in which objects of one category have a common alignment. The
projection of the NOCS coordinates in the image plane (also called NOCS map)
is predicted by extending Mask R-CNN [14] with an additional head. From this
prediction, the 6D pose and scale can be estimated by employing the Umeyama
algorithm [25] with RANSAC [13] for outlier removal.

The NOCS map was predicted using only RGB information. Since geometry
typically varies less than appearance for a fixed category, several methods were
proposed to more directly incorporate the observed point set into the prediction.
Chen et al. [4] introduced canonical shape space (CASS), which regresses the
orientation and position directly from the cropped image and the set of observed
points. As a byproduct of their method, they also reconstruct the full canonical
point set. Tian et al. [24] introduced shape prior deformation (SPD), which uses
a canonical point set and predicts a deformation based on the observed RGB-
D information. CR-Net [27] and SGPA [5] are two extensions of the original
idea of SPD. CR-Net uses a recurrent architecture to iteratively deform the
canonical point set, and SGPA uses a transformer architecture to more effectively
adjust the canonical point set. Recently, good results were demonstrated by only
training on synthetically generated views of ShapeNet meshes [2].

Other methods such as [6] and [18] predict pose and bounding box without
reconstructing the full shape of the object. For the evaluation presented in this
work, we limit ourselves to methods that perform both reconstruction and pose
estimation, although our evaluation protocol could in principle be used for pure
pose estimation methods as well.

Aside from these RGB-D-based methods, more RGB-based methods have
been proposed. Chen et al. [7] proposed an analysis-by-synthesis framework in
which the latent representation of a generative model is iteratively optimized
to fit the observed color image. The generative model allows to generate novel
views of the object, but a full reconstruction is not readily available. Lee et
al. [17] introduced a framework for estimating a mesh from an RGB image, while
Engelmann et al. [10] propose reconstructing shapes in a representation-agnostic
way by classifying the closest matching object from a database.

Evaluation The most established benchmark dataset for categorical pose esti-
mation is the REAL275 dataset proposed by [26]. We will take a critical look at
that dataset in Section 3.3 and show that it only evaluates a constrained set of
orientations, hiding inherent difficulties of the task, such as multimodal orienta-
tion distributions. [26] also proposed average precision as a metric to evaluate
pose estimation.

To evaluate shape reconstruction most papers currently use chamfer distance
(CD) [2,4,24], which was introduced to measure the difference of point sets by
[12]. However, [23] noted that CD is not robust to outliers, that is, the distance
of outliers affects the metric. Therefore, the authors advocate using a robust
thresholded metric such as F-score [16] to measure the quality of reconstruction.
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3 Evaluation Protocol

In this section, we will discuss the existing and proposed evaluation protocol. We
will start by formally defining the problem of categorical pose and shape estima-
tion. We will then discuss metrics to evaluate and compare different solutions to
this problem. Finally, we discuss the evaluation datasets.

3.1 Problem Definition

Let I ∈ RH×W×3 be an RGB image, D ∈ RH×W be a depth map, and P ∈
R3×4 be the projection matrix of the associated camera. Further, let Ti j be the
homogeneous transformation matrix, that transforms a point pj from frame j
to frame i, that is, pi = Ti j pj . Note that depending on the context, Ti j can
also be interpreted as the 6D pose of frame j in frame i. Let Ri j and ti j further
denote the rotation matrix and translation vector of which Ti j is composed.

We will use o to denote the object’s coordinate frame and c to denote the
camera’s coordinate frame. We will use O to denote a 3D object and B(O)
to denote the axis-aligned bounding box of O in O’s frame o. We will assume
that the center of B(O) is at the origin of frame o. We further assume that
transforms can be applied to 3D objects and bounding boxes, for example, Oc =
Tc oO. Following this notation, note that there is a difference between B( Oc )

and Tc oB(O). The first one is an axis-aligned bounding box (AABB), the second
is an oriented bounding box (OBB).

Problem 1. (Categorical Pose and Shape Estimation) Given (I,D,P) imaging
an object O of known category c at pose Tc o, and given the mask M of visible
points of the object in the image, find estimates Õ and T̃c o of O and Tc o,
respectively.

Similarly, one could define the problems of categorical pose estimation (es-
timate Tc o only) and categorical pose and size estimation (estimate Tc o and
B(O)). Extensions to multiple images are possible by introducing a world coor-
dinate system, but are not further considered in this work.

3.2 Metrics

Various metrics exist to assess how well a method solves Problem 1. Currently,
the predominant evaluation metric is average precision [26,4,27,5,2,18,6,17] for
pose estimation and chamfer distance [12,4,27,5,2,17] for shape reconstruction.
In this section, we will introduce these metrics and discuss several issues with
them. Subsequently, we will advocate for precision (contrary to average preci-
sion) and F-score to evaluate pose estimation and shape reconstruction, respec-
tively.

We first define similarity measures for transforms and objects. These are later
used to define the evaluation metrics for Problem 1.
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Definition 1. Let d( Tc o, T̃c o) denote the translation error between the ground-
truth transform and the estimated transform, that is,

d( Tc o, T̃c o) = ∥ tc o − t̃c o∥2. (1)

Definition 2. Let δ( Tc o, T̃c o) denote the rotation error between the ground-
truth transform and the estimated transform, that is,

δ( Tc o, T̃c o) =

∣∣∣∣∣ trace( Rc o R̃c −1
o )− 1

2

∣∣∣∣∣ . (2)

Definition 3. Let IoU(B1,B2) denote the true intersection over union (IoU) of
two tight, oriented bounding boxes [1]. Further, let the axis-aligned IoU between
two objects be defined by

IoU+( Oc , Õc ) = IoU
(
B( Oc ),B( Õc )

)
, (3)

and the true IoU using tight, oriented bounding boxes by

IoU( Oc , Õc ) = IoU
(

Tc oB(O), T̃c oB(Õ)
)
. (4)

The current evaluation protocol [26] uses axis-aligned IoU+ instead of oriented
IoU, although the former is less accurate. Our implementation follows [1] and
computes oriented IoU.

Chamfer Distance In the context of shape reconstruction chamfer distance
(CD) was introduced by [12] to differentiably measure the difference of point
sets.

Definition 4. Let S ⊂ R3 and S̃ ⊂ R3 denote point sets sampled from the
surfaces of O and Õ, respectively. We define CD as

CD(S, S̃) = 1

2|S|
∑
x∈S

min
y∈S̃

∥x− y∥2 +
1

2|S̃|

∑
y∈S̃

min
x∈S

∥x− y∥2. (5)

It is easiest to interpret as the mean Euclidean distance from a point in one point
set to the closest point in the other set. Note that slightly different CD versions
exist, such as squared versions and ones using the sum instead of arithmetic
mean.

In Fig. 1 we visualize potential issues with CD as an evaluation metric. Con-
sider the two mugs with different handles (denoted 1 and 2) as reconstructions
of the mug without handle (denoted GT). The relative quality difference of these
reconstructions measured by CD varies significantly depending on the number of
samples. Furthermore, a large number of samples is required for CD to converge.

Notably, the number of ground-truth samples is left unspecified by most
methods. This problem becomes further amplified because methods perform re-
construction by predicting a varying number of samples as noted by [2]. There-
fore, we discourage further use of CD for evaluation purposes.
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Fig. 1: Visualization of the effect of varying number of samples on the chamfer
distance. We consider two reconstructions (denoted by 1 and 2) of the ground
truth (denoted by GT). Note that particularly the relative difference between
CD(SGT,S1) and CD(SGT,S2) varies significantly. This is because the majority
of the error stems from sparse sampling, not from actual differences in geometry.
All mugs have been scaled to be 10 cm tall.

Reconstruction F-score Following [23], we advocate using the F-score instead
of CD to evaluate shape reconstruction. Furthermore, note that we can evaluate
shape reconstruction in the object frame or in the camera frame, taking into
account Tc o and T̃c o. Although previous methods evaluated in the object frame
(i.e., assuming perfect alignment based on the canonical reference frame), we
believe it is better to evaluate posed reconstruction in the camera frame, as it
correlates more directly with downstream usability of the full estimate.

Definition 5. Let S ⊂ R3 and S̃ ⊂ R3 denote point sets sampled from the
surfaces of O and Õ, respectively. Given an application-specific threshold ∆, we
define reconstruction recall as

r∆ =
1

|S|
∑
x∈S

[
min
y∈S̃

∥x− y∥2 < ∆

]
(6)

and reconstruction precision as

p∆ =
1

|S̃|

∑
y∈S̃

[
min
x∈S

∥x− y∥2 < ∆

]
, (7)

where [·] denotes the Iverson bracket. Finally, we define F-score as the harmonic
mean of precision and recall

F∆ =
2

p−1
∆ + r−1

∆

. (8)
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Note that ∆ should be adjusted depending on the application and the sensor.
For the table-top items contained in the datasets, we propose to use ∆ = 1 cm.

In Fig. 2 we show F1cm for varying numbers of samples for the meshes in
Fig. 1(a). F1cm converges significantly faster than CD and can easily be inter-
preted as the percentage of correct (i.e., error below ∆ = 1 cm) surfaces or points
[23].
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Fig. 2: Visualization of the effect of varying number of samples on the F1cm

metric. Note that compared to CD (see Fig. 1) F1cm converges significantly
faster.

All metrics so far (i.e., d, δ, IoU,CD, and F∆) assess the quality of a single
estimate. Next, we discuss average precision and precision, which attempt to
summarize a method’s performance on a dataset. In principle, one could also
compute different averages of the aforementioned metrics, but those are typically
affected by outliers and hard to interpret in comparison to thresholded evaluation
metrics that classify estimates as true or false.

Average Precision Average precision (AP) summarizes precision-recall curves
in a single value [22] and has been the standard evaluation metric for object
detection on the PASCAL VOC [11] and COCO datasets [19]. In general, average
precision is calculated based on the interpolated precision-recall curve, which is
constructed by varying a confidence threshold.

Wang et al. [26] proposed to use AP with different thresholds on IoU+, d,
and δ to evaluate their pose estimation (all specified thresholds must hold for a
prediction to count as true positive). Their method includes a Mask R-CNN ar-
chitecture to detect objects and therefore had a confidence threshold to compute
AP. However, none of the following pose and shape estimation methods include
such a confidence threshold. Instead they all assume M to be given as stated in
Problem 1.

To still follow the same evaluation protocol as [26], all other methods rely
on the same, suboptimal Mask R-CNN predictions that [26] provided. This pro-
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tocol effectively limits the achievable AP due to wrong classifications, missing
detections and poor masks. Furthermore, AP is inherently difficult to interpret
compared to simpler metrics.

Therefore, we believe that AP is unnecessary to compare pose and shape es-
timation methods. Rather, simpler metrics, such as precision (see below), should
be used, assuming that mask M and category c are provided.

Precision We propose to use precision, contrary to average precision, to assess
categorical pose and shape estimation.

Definition 6. Given inputs (Ii,Di,Pi,Mi, ci), ground truths (Oi, Tc i
o), and as-

sociated predictions (Õi, T̃c i
o) with i = 1, ..., N , let precision be defined as

P =

∑N
i=1

[
c(Oi, Tc i

o, Õi, T̃c i
o)
]

N
, (9)

where [·] denotes the Iverson bracket and c determines whether a prediction is
correct or not based on a single or multiple thresholds on IoU, δ, d or F∆.

That is, precision measures the percentage of correct estimates based on thresh-
olds on translation error, rotation error, IoU and F-score. Note that we can
use this simpler metric instead of average precision because we decouple pose
estimation from detection and classification.

Summary We propose to evaluate categorical pose and shape estimation meth-
ods by calculating precision at varying thresholds of d, δ and F∆. Furthermore,
this evaluation procedure can be adjusted for categorical pose estimation by
using d and δ only and for categorical pose and size estimation by using IoU
instead of F∆. The thresholds for these metrics must be adjusted based on ap-
plication requirements, sensor accuracy, and annotation quality. Furthermore,
when combining multiple thresholds, care should be taken that they are roughly
equally strict.

Note that when evaluating δ and IoU, extra care must be taken with respect
to the categories containing symmetric objects. We follow [26] and ignore rota-
tions around the up-axis for the bottle, bowl, and can categories. Further issues
with ambiguities are discussed in Section 5.

3.3 Datasets

So far, most methods have been evaluated on the synthetic CAMERA25 dataset
and on the smaller real-world dataset REAL275 [26]. Since we are more inter-
ested in real-world performance, we only include the REAL275 dataset in our
evaluation protocol. Next, we will give an overview over the REAL275 dataset,
and our new annotations for the Redwood dataset [8].
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REAL275 The REAL dataset was proposed by Wang et al. [26] and con-
sists of 4300 training images (7 video sequences) and 2750 test images (6 video
sequences). The dataset contains 6 categories (bottle, bowl, camera, can, lap-
top, and mug) and contains 4 to 7 objects per scene. Meshes for each object
are provided, obtained using an RGB-D reconstruction algorithm. Since we are
primarily interested in evaluation, we will focus on the evaluation split, called
REAL275, from here.

Fig. 3: Examples of REAL275 samples for the 6 object categories. Note that all
objects are positioned upright on a table.

Fig. 3 shows point sets with their corresponding ground-truth annotations.
Note that all objects are upright on planar surfaces. Similar constrained orien-
tations can be found in the training splits of the CAMERA and REAL datasets.
Fig. 6(a) visualizes the distribution of orientations contained in the REAL275
dataset. Note that such constraints, present in training and test data, can signif-
icantly simplify the learning problem as pose and shape ambiguities disappear
(e.g., upright or upside-down can).

Redwood To evaluate methods on less constrained orientations, we contribute
annotations for a set of images in the Redwood dataset [8]. The Redwood dataset
contains sequences of handheld objects being freely rotated in front of the cam-
era. No ground-truth reconstructions are provided for these sequences.

We annotated pose and shape for 3 categories (bottle, bowl, mug) for 5
sequences each. These annotations were created by manually creating OBBs in
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Fig. 4: Manual annotations for Redwood dataset. The left column shows the
cropped, accumulated point sets (including symmetries) extracted from anno-
tated bounding boxes. The middle columns shows the voxel grid after carving.
The right column shows the extracted mesh, overlaid with the point set.

multiple frames and exploiting potential symmetries of the object. Alignment of
OBBs with previous annotations was sped up and refined by using the iterative
closest point (ICP) algorithm. For each of the annotated sequences we took a
subset of 5 frames covering various orientations. We will refer to this set of
annotations as REDWOOD75.

To reconstruct the shape from the partially occluded and noisy depth data,
we start from a dense voxel grid inside the bounding box and apply voxel carving
using the annotated frames to remove hands and other temporary occlusions.
The remaining voxel grid contains only voxels that are not observed to be free in
any of the annotated frames. From this voxel grid, we extract a mesh and apply
Laplacian smoothing. Fig. 4 visualizes the annotation process.

Note that this method only approximates the real shape and is sensitive
to misaligned bounding boxes and missing depth data. Especially thin surfaces
and details, such as mug handles, are difficult to extract accurately due to sensor
noise. Additionally, alignment errors can easily accumulate, resulting in too large
or too small objects. However, the annotations are accurate enough to evaluate
the performance of current methods on unconstrained orientations.

To produce the final ground truth, we compute tight bounding boxes based
on the extracted meshes. Fig. 5 shows examples of the final annotations. In Fig. 6
we compare the orientation distribution of REDWOOD75 and REAL275. Note
that the orientations in REDWOOD75 are significantly less constrained than in
REAL275.
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Fig. 5: Examples of REDWOOD75 samples.

(a) REAL275 (b) REDWOOD75

Fig. 6: Distribution of the up-axis in REAL275 and REDWOOD75 datasets.
REDWOOD75 covers a larger variety of orientations.

4 Experiments

We follow our proposed evaluation protocol and compare three methods for
shape and pose estimation: CASS [4], SPD [24], and ASM-Net [2]. CASS and
SPD are well-established baselines for this task and were both trained on the
CAMERA and REAL datasets. Unlike the other methods, ASM-Net [2] was
trained on synthetic ShapeNet [3] renderings only. All methods estimate 6D
pose and reconstruct a point set of varying density.

For all methods, we closely followed the published inference code and verified
that our method interface produced results similar to their evaluation code. We
found that only SPD’s published model achieved the same qualitative results
as shown in their publication. CASS’ reconstructed point sets were significantly
worse except for the laptop category and ASM-Net often predicted negative
scales, which causes some reconstructions to be upside down, while the object
frame o is predicted in the correct orientation.
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We have implemented the metrics, and interfaces to the datasets and methods
described in the previous sections using Open3D [28] and PyTorch [21]. We
open-source our code as a benchmarking toolbox, with the goal of simplifying
fair comparison with state-of-the-art methods. We plan to extend the toolbox
as new methods are released.

Qualitative Results Fig. 7 shows randomly selected results on the REAL275
and REDWOOD75 datasets. On REAL275, all methods perform pose estimation
with a similar quality as shown in the respective publications. On REDWOOD75,
on the other hand, only ASM-Net shows limited generalization capability. CASS
and SPD predict upright objects consistent with the orientation distribution of
REAL275 independent of the input.

The shape reconstructions of SPD are qualitatively the best. ASM-Net’s re-
constructions are often flipped, but surfaces typically align well. As noted above,
CASS completely fails to reconstruct any object except laptops. For both ASM-
Net and CASS it is unclear whether this performance difference stems from
errors in the code or if the published model weights are suboptimal.

Table 1: Precision at varying position, orientation and F-score thresholds.
REAL275 REDWOOD75

CASS SPD ASM-Net CASS SPD ASM-Net

10◦,2 cm 0.331 0.535 0.331 0.013 0.2 0.307
5◦,1 cm 0.073 0.205 0.069 0.000 0.013 0.080
10◦,2 cm,0.6 0.031 0.471 0.215 0.000 0.173 0.173
5◦,1 cm,0.8 0.000 0.170 0.050 0.000 0.013 0.053

Quantitative Results We now present the results using the metrics introduced
in Section 3.2. In Table 1 we report precision with thresholds of varying strict-
ness. To assess pose estimation independent of shape estimation, we use 5◦, 1 cm
and 10◦, 2 cm. To further include shape reconstruction, we use 5◦, 1 cm, 0.8 and
10◦, 2 cm, 0.6 for δ, d, and F1cm, respectively. We picked these tuples of thresholds
such that all thresholds in a tuple are roughly equally strict. In the past, some
methods used pairs such as 10◦, 5cm, or 10◦, 10cm, where only the 10◦ threshold
practically mattered.

The results from Table 1 confirm the qualitative observations from before.
CASS in particular performs poorly on the shape reconstruction metrics. Note
that for both datasets there is still a lot of room for improvement. Typically,
significantly fewer than 50% of the estimates are of sufficient quality to be con-
sidered correct in pose and shape. This shows that categorical pose and shape
estimation is still an open problem, especially for unconstrained orientations.
The performance gap between the two datasets is especially noticeable for SPD,
which performs better than ASM-Net on REAL275 but worse on REDWOOD75.



Evaluation of RGB-D-based Categorical Pose and Shape Estimation 13

GT CASS SPD ASM-Net

(a) REAL275

GT CASS SPD ASM-Net

(b) REDWOOD75

Fig. 7: Randomly selected results on REAL275 and REDWOOD75 datasets. Re-
sults that are considered correct under δ = 10◦, d = 2 cm, F1cm = 0.6 thresholds
are highlighted.

To gain further insight into the estimation quality of the methods, we show
detailed results for varying thresholds in Fig. 8. It can be seen that the difference
between the two datasets is more pronounced for orientation-based thresholding.
This confirms the issue of constrained orientations discussed in Section 3.3 (see
Fig. 6). ASM-Net, which was trained on synthetic data (the exact distribution
was not specified but is likely less constrained than the CAMERA and REAL
datasets), performs best in this metric.

In Table 2 we further report the precision per category with the more le-
nient pose and shape estimation thresholds δ = 10◦, d = 2 cm, F1cm = 0.6. Note
that CASS’ reconstructions are very sparse and noisy, and therefore rarely reach
F1cm > 0.6 (see also Fig. 8). On REAL275, all methods fail at the camera
category which contains significantly more shape variation than the other cate-
gories. Note that, despite these relatively lenient thresholds, all methods fail to
sufficiently recover pose and shape for most of the REDWOOD75 samples.

Run Time We also compute the mean run time of each method per prediction.
We include the transfer time from CPU to GPU, but exclude the computation
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of the metrics. In our experiments1, CASS required 22.3ms, SPD 199ms, and
ASM-Net 58.6ms.
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Fig. 8: Detailed precision results for CASS ( ), SPD ( ) and ASM-Net
( ) for varying thresholds of position, orientation and F-score thresholds.

Table 2: Precision for different categories with δ = 10◦, d = 2 cm, F1cm = 0.6.
REAL275 REDWOOD75

Bottle Bowl Camera Can Laptop Mug Bottle Bowl Mug

CASS 0.002 0.093 0.001 0.030 0.0 0.068 0.000 0.000 0.000
SPD 0.610 0.892 0.052 0.863 0.218 0.246 0.320 0.160 0.040
ASM-Net 0.167 0.137 0.023 0.587 0.133 0.229 0.160 0.360 0.000

5 Limitations

Comparability The results from Section 4 suggest that training on synthetic
data currently generalizes better to unconstrained orientations. This is expected,
1 Intel Core i7-6850K CPU, NVIDIA TITAN X (Pascal) GPU
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since synthetic data allows accurate, unconstrained generation of training data.
This opens the question of whether CASS or SPD would generalize better or
worse when trained on the same synthetic data as ASM-Net. Since the training
code for CASS and ASM-Net has not been published, it is difficult to perform
further comparisons. In general, since methods currently vary significant parts of
training datasets, architecture, pose parameterization, and losses, it is difficult
to assess the individual contributions of a single change.

Multimodal Distributions Unconstrained pose estimation introduces signif-
icant difficulties in the task, which were hidden due to the constraints present
in the CAMERA and REAL datasets. Consider, for example, the bottom left
mug in Fig. 5. From the given view, it is difficult to tell which way the opening
of the mug faces. Another example are cans, which are geometry-wise nearly
symmetric. Currently there are only few works [20,9] that consider this problem
of ambiguous poses and evaluation of such methods that predict multimodal
posteriors is difficult. One possible way of evaluating such methods would be
to allow methods to generate N hypotheses. Precision could then be computed
for the best and worst hypothesis. A strong method would generate the same
hypothesis N times if there is no ambiguity. If there is ambiguity, the correct
hypothesis would still be contained in the set of hypotheses with a high probabil-
ity. Alternatively, likelihood-based metrics might be suitable if methods provide
likelihoods instead of hypotheses.

Dataset Size The REDWOOD75 dataset is limited in size, but the results
suggest a clear lack of generalization capability of current approaches. This shows
the need for larger datasets for unconstrained pose and shape estimation. It is
an open question how such a dataset could be collected in the most efficient way.

6 Conclusion and Outlook

In this work, we have discussed the limitations of the current evaluation proto-
col prevalent in the field of categorical pose and shape estimation. In particular,
existing datasets contain only a heavily constrained set of orientations, which
simplifies the problem by removing pose and shape ambiguities. Furthermore,
existing evaluation metrics are suboptimal and unnecessarily difficult to inter-
pret. To alleviate these problems, we propose a new set of metrics applicable to
both the established REAL275 and our proposed REDWOOD75 dataset, which
contains a large variety of orientations. We apply our evaluation protocol to
three methods and confirm limited generalization capability as suggested by the
constrained orientations in their training data.

Our experiments suggest that there is a need for larger, high-quality datasets
for unconstrained pose and shape estimation as well as for methods that can han-
dle unconstrained orientations and the resulting pose ambiguities in a principled
way.
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