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Abstract— A key challenge in robotics is the efficient
generation of optimal robot motion with safety guarantees
in cluttered environments. Recently, deterministic optimal
sampling-based motion planners have been shown to achieve
good performance towards this end, in particular in terms
of planning efficiency, final solution cost, quality guaran-
tees as well as non-probabilistic completeness. Yet their
application is still limited to relatively simple systems (i.e.,
linear, holonomic, Euclidean state spaces). In this work, we
extend this technique to the class of symmetric and optimal
driftless systems by presenting Dispertio, an offline dispersion
optimization technique for computing sampling sets, aware
of differential constraints, for sampling-based robot motion
planning. We prove that the approach, when combined with
PRM*, is deterministically complete and retains asymptotic
optimality. Furthermore, in our experiments we show that
the proposed deterministic sampling technique outperforms
several baselines and alternative methods in terms of planning
efficiency and solution cost.

I. Introduction

Motion planning is key to intelligent robot behavior.
For motion planning in safety-critical applications, where
self-driving cars, social or collaborative robots operate
amidst and work with humans, safety guarantees, ex-
plainability and deterministic performance bounds are of
particular interest. In the past, many motion planning
approaches have been introduced to improve planning
efficiency, path quality and applicability across classes
of robotic systems. Probabilistic sampling-based motion
planners [7], [9], [6] and their optimal variants [5], [4]
have shown to outperform combinatorial approaches [11],
especially for high-dimensional systems with complex en-
vironments and differential constraints. Sampling-based
planners explore the configuration space by sampling
states and connecting them to the roadmap, or tree,
which represents and keeps track of the spatial con-
nectivity. Typically samples are drawn from a uniform
distribution over the state space by an independent and
identically distributed (i.i.d.) random variable. Biasing
techniques towards the goal region or promising areas
of the configuration space may be used if available [16],
[17]. The randomness of the samples set ensures good
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Fig. 1: Comparison of the coverage between [ low
dispersion Halton samples and our optimized samples for
a 2D Euclidean case. Bright color highlights uncovered
areas. Our approach achieves better coverage than the
baseline.

exploration of the configuration space, but comes at the
expense of stochastic results which may strongly vary
for each planning query in terms of planning efficiency
and path quality. This stochasticity makes the formal
verification and validation of such algorithms, needed
for safety-critical applications, difficult to obtain.

To address this issue, several authors [8], [3] proposed
to use deterministic sets (or sequences). Contrarily to
using i.i.d. random variables, this technique allows to
achieve deterministic planning behaviors while still get-
ting on par or even better performance. Moreover, as
described also in [8], [3], deterministic sampling allows an
easier certification process for the planners (e.g., in terms
of final cost, clearance from the obstacles). Particularly,
as we will see also in our case, those approaches have
been shown to be complete (i.e., to find a solution)
for planning queries for which a solution with certain
clearance exists. However, current approaches limit their
applicability to Euclidean spaces [8], systems with linear
affine dynamics [3] and specific driftless ones [19].

With the goal to further enhance the usage of deter-
ministic sampling to symmetric and optimal driftless sys-
tems, in this work we present Dispertio, an optimization-
based approach to deterministic sampling. The approach
computes a sampling set which minimizes the actual
dispersion of the samples. To compute the dispersion
metric, we need access to a steer function [15], [20] that
can compute an optimal path connecting two states.
We focus our attention on uninformed batch-based algo-
rithms (e.g., PRM* [5]) where the set of samples can be
precomputed offline. We prove that the approach, when



combined with PRM*, is deterministically complete and
retains asymptotic optimality. Furthermore, we system-
atically compare our approach to the existing baselines
[3], [19]. The experiments demonstrate that our approach
outperforms the baselines in terms of planning efficiency
and overall final path quality.

II. Related Work

LaValle et al. [8] highlight the relationship between
grid-based and probabilistic planning, see Fig. The
authors advocate that grid-based planners and proba-
bilistic sampling-based planners all belong to the same
class of sampling-based algorithms and are extremes
of a broad spectrum of sampling strategies, ranging
from deterministic to highly stochastic techniques. They
highlight the benefits of deterministic sampling sets (or
sequences) such as grids [10], [13], lattices [18], or Halton
and Sukharev sequences [25], [24]. In particular, LaValle
et al. [1], [8] show that dispersion (see Sec. for
the definition) is the deciding metric when it comes to
resolution complete path planning. The reason is that
dispersion provides lower bounds on the coverage of the
space. The authors prove that low dispersion sampling,
using for example Halton and Sukharev sequences [25],
[24], provides deterministic completeness guarantees on
finding feasible paths, which i.i.d. sampling can only
probabilistically provide, i.e., the planner will find a
solution with a probability of 1 as the number of samples
goes to infinity. Our approach follows the ideas presented
by [8] and extends their results to motion planning with
differential constraints.

While the authors in [8] focus on feasibility in de-
terministic sampling-based motion planning, Janson et
al. [3] extend the approach to address optimality. The
authors show that with a particular choice of low
dispersion sampling (I, dispersion of order O(n~'/P),
e.g., Halton sequence, with D being the state space
dimension of the considered system), optimal sampling-
based planners (i.e., PRM* [5], [21]) can use a lower con-
nection radius compared to i.i.d. sampling thus requiring
a lower computational complexity, i.e., r, € w(n_l/ Dy,
Moreover, they show that the cost or suboptimality of
the returned solution can be bounded, based on the
dispersion. The latter work limits its applicability to
Euclidean spaces and to systems having linear affine
dynamics. In comparison our method can be applied
also to symmetric and optimal driftless systems with
differential constraints.

Poccia [19] proposes an approach for generating a
set of deterministic samples for nonholonomic systems.
The approach needs an explicit and careful analysis
of the system equations to come up with a sampling
scheme. Differently, our approach provides an algorithm
that only needs the availability of an optimal steer
function, a common assumption for optimal sampling-
based planning [5], [21].

Unlike state-lattice approaches [18], which can be seen
as part of the class of deterministic sampling-based plan-
ners, our approach does not rely on a regular grid or a
set of pre-defined motion primitives. Instead, it optimizes
the position of the samples based on the dispersion
metric that accounts for the differential constraints of
the system.

III. Our Approach

In this section, we formalize the problem that we aim
to solve and the novel dispersion definition. We will then
describe our algorithm and analyze its properties.

A. Problem Definition

Let X C RP be a manifold defining a configuration
space, U C RM the symmetric control space, Xo,s C X
the obstacle space and Xpee = X\ Apps the free space.
A driftless control-affine system can be described by a
differential equation as

M
(t) = Zgj(m(t))U(t) (1)

where x(t) € X, u(t) € U, for all ¢, and ¢1,. .., ga being
the system vector fields on X. For the remainder of the
paper we will focus on symmetric systems for which an
optimal steer function exists.

Let v denote a planning query, defined by its initial
state @gtare € X and goal state Tz € X. We define
the set of all possible solution paths for a given query
v as Xy, with 0 € £, : [0,1] = Xpee being one of
the possible solution paths such that ¢(0) = @sart and
0(1) = Tgoa1. The arc-length of a path o is defined by
(o) = fol [|6(t)|]2 dt. The arc-length induces a sub-
Riemannian distance dist on X" dist(x, z) = inf, (o),
i.e., the length of the optimal path connecting x to z,
which due to our assumptions is also symmetric. Let o*
denote the set of all points along a path ¢. The dist-
clearance of a path o is defined as

dgist(0) = sup {r € R | Raist(x, 1) C Xiree V& € 0*} (2)

where Raist (£, 7) is the cost-limited reachable set (closed
if not otherwise stated) for the system in Eq. 1| centered
at @ within a path length of r (e.g., a sphere for Euclidean
systems):

Raist(x,7) = {z € X | dist(w, z) < r}. (3)
The dist-clearance of a query ~ is defined as

Saist(7) = sup {daise (0) | o0 € £} (4)

and denotes the maximum clearance that a solution
path to a query can have. An optimal sampling-based
algorithm solves the following Sdist—robustly feasible mo-
tion planning problem P: given a query 4 with a dist-
clearance of dqjst (§) > Sdist, find a control u(t) € U with
domain [0, 1] such that the unique trajectory o satisfies
Eq. [l is fully contained in the free space Xgpee € X
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Fig. 2: Range of possible sampling and roadmap types as introduced by LaValle [8]. The highlighted ones are

deterministic.

and goes from Tgiary t0 Xgoa. Moreover it minimizes,
asymptotically, a defined cost function ¢ : ¥, — Rxo.
Hereinafter, we will use the term steer function to
indicate a function that generates a path in X connecting
two specified states. In particular we will use steer
functions that solve an optimal control problem, i.e.,
minimizing the cost c.

In the following sections, we describe the approach
to solve P by using an optimization-based sampling
technique that minimizes the actual dispersion of the
sampling set used by batch-processing algorithms (e.g.,
PRM] see Alg. [1).

B. Dispersion for Differentially Constrained Systems

We use and modify the dispersion definition for a
sampling set S = {xg, x1,...,x,} C X, introduced by
Niederreiter [14] and also adopted by [8], [3]:

daisy = sup{r > 0 | 3x € X with Raist(x,7) NS = 0}.
(5)
Intuitively the dispersion can be considered as the radius
of the largest (open) ball (i.e., size of the reachable set)
that does not contain an element of S. In the context of
differentially constrained motion planning, we propose
to adjust the dispersion metric to explicitly require the
reachable sets Raist(x, ) to be fully contained in X:

dgist = sup{r > 0 | 3x € X with Raist(z,7) NS =0
A Rdist(ac, ’I“) - X}
(6)
We also require this metric to respect possible iden-
tifications of the configuration space. Differently from
previous approaches [8], [19], [3], we will compute the
dispersion metric by numerically computing offline the

reachable sets Rqist(x, ) where r > 0 is the path length
obtained by an optimal controller.

C. The Dispersion Optimization Algorithm

As discussed by [9], [3] multi-query sampling-based
planners, such as PRM* or FMT*, generate as initial
step a set S of collision free samples, see line 2 of
Alg. Instead of using i.i.d. random variables, or an
existing deterministic technique to generate S (e.g.,
Halton sequence, [8], [19], [3]), we propose to compute the

1Due to space limitations, we will not detail the algorithm PRM*.
A reader interested to the properties of the algorithm can refer to
[5]-

set by minimizing the dispersion of Eq. [6] Our algorithm
named Dispertio is outlined in Alg. |2l The general idea
of the algorithm is to pick in each step the sample (up
to n < Ngg) that maximizes the distance to both the
defined border of the configuration space as well as to
the next sample. In other words we want to greedily put
the sample into the position that currently defines the
dispersion metric.

We propose to make this task computationally feasible
by discretizing the configuration space into a fine grid of
Nes equidistant (distance could be different per dimen-
sion) cells. The dispersion tensor D keeps track of the
minimum distance to either the border or closest sample
for each grid cell (in Alg[2]we denote the dispersion value
at the cell or position ¢ as D.), computed by solving
Eq. [6] using an optimal steer function.

If it is possible to compute the distance to the border
quickly (e.g., Euclidean case), we initialize D with the
distance to the border for each grid cell, otherwise D
is initialized with oo, line 1 of Alg. 2] In this case, we
check whether the update step to a potential sample
would affect any border sample. If this is the case, we
will not add the sample to S, but instead run an update
step on the border sample without adding it.

At each algorithm iteration, we generate a sample x;
that maximizes the current dispersion tensor D and add
it to S, see lines 3-7 of Alg. [2l For a given sample, D is
updated (line 5 of Alg. [2) with a flood-fill algorithm, by
only expanding cells for which the dispersion has been
updated. In this way we are exploiting the connectedness
of time-limited reachable sets. The sequence for the
flood-fill algorithm can be pre-computed to prevent
double checking of already tested cells.

Despite having a time complexity exponential in di-
mensions due to the flood-fill algorithm (i.e., O(n¢P),
with the constant & > 0 being related to discretization
and complexity of dist), the algorithm is a feasible pre-
computation step for many systems (e.g., Reeds-Shepp
space, 6D kinematic chain using Euclidean distance).
Once the set S has been generated, we can then use it
in a motion planning algorithm such as PRM* (Alg. .
PRM*-edges are generated with the same steer function
used to optimize the set S.



Algorithm 1 PRM*. @gar is the start state, Tgoa the
goal state, n the desired number of samples.

1: procedure PRM*
S + SampleFree(n)
V {mstarh zgoal} us
for v in V do

U < Near(V,v,7v|)

for v in U do

if CollisionFree(v, u) then
E+ EU{(v,u)}

: end if
10: end for
11: end for
12: return ShortestPath(zstart, Zgoal, (V, E))
13: end procedure

Algorithm 2 Dispersion Optimization

1: procedure Dispertio
D < DistanceToBorder
while |S| < n do
x; < argmax, D¢
UpdateDistanceMatrix(D, x;)
S+ Su {.’.Bl}
end while
end procedure

PN AW

D. Dispertio-PRM* Analysis
In this section we detail how PRM* [5], when using
our deterministic sampling approach, retains the com-

pleteness and asymptotic optimality properties as in [§],
[19], [3].

Fig. 3: Visualization of the proof of completeness. s;;1 is
placed along the (unknown) path of maximum clearance
o such that g; lies on the border of Raist(8it1,ddist)-
Since Raist(q;; daist) and Raist(g;4+1, daist) overlap and
are fully contained in Rgist(8i+1,2dqist) the path from
q; to g;,, is collision free.

1) Completeness: We show that the approach deter-
ministically returns a solution if it exists and returns
failure otherwise [8], [3], [19]. Note that this is a stronger
property than probabilistic completeness [7].

Theorem 1: Given a set of samples & with known
dispersion dgis; and considering general driftless systems

for which we have steer functions that are optimal and
symmetric, we can solve all planning queries v with Alg.
using a connection radius r > 2dg;st having clearance of

daist (7) > 2ddist- (7)
Proof: To see this, first note that Rast(x,7)
for optimal steering functions, is equivalent to time-
limited reachable sets of the system. Hence, trajectories
from x to any other point in Rgst(x, ) will also be
fully contained in Rgist(x,r). Given a query v with
clearance d(y) > 2daist, there exists a solution o with
R(si,QJdist) € Xiee, Vs; € o*. First note that due to
the dispersion definition, there must be a sample of § in
both Raist (mstarta ddist) and Raist (mgoala ddist)- Thus it is
possible to connect the start and goal configuration to
the roadmap. It remains to show that a dist-clearance
of daist (7) > 2dgis; is sufficient to find a path from @gar
t0 Tgoal. Let gy and g, denote the samples that Tgpar
and Tgoa are connected to, respectively. By taking s;
along a path o and such that g lies on the border of
Rdist(sl,cidist) we see, due to the dispersion definition
in Eq. [6] that there must be another sample in the
reachable set, denoted by gq;. At this point we only
know that the path from g, over s; to g; must be
collision free. Since only g, and q; are known, we require
a factor of 2 in the clearance (i.e., 2d it in Eq. ,
which ensures that the path from g, to g; must be
collision-free. To see this, note that due the system
symmetry both Raist(qq, daist) and Raist (g1, daiss) must
be contained in R(s1, 2dgist) C Xtree. We also know that
the intersection Raist (g, daist) N Raist (g1, ddist) contains
s1 and is thus nonempty. The trajectory from g, to q,
must pass through this intersection and is hence collision-
free. The same idea can now be repeated until the path
to qp is found. Fig. [3| visualizes the proof. [
2) Asymptotic Optimality: In this section, following
[3] we will show that PRM* is asymptotically optimal
when using the sampling sets generated by Dispertio.
Particularly, Janson et al. [3] show that PRM* is asymp-
totically optimal when using deterministic sampling sets
in D dimensions whose dispersion is upper-bounded
by v n=YP, 4 > 0. Next, we will show how the
sampling sets generated by our approach reach the
same asymptotic dispersion (see Theorem , i.e., lower
lo-dispersions, for all driftless control-affine systems,
therefore retaining the PRM* asymptotic optimality. For
the special Euclidean case, we show that the algorithm
reaches the same asymptotically optimal dispersion as for
example the Halton sequence. Note that for simplicity we
are using a simplified version of the algorithm, without
discretization and assuming the distance to the border is
known. Throughout the discussion we again assume that
the distance function dist is symmetric and optimal. Also
note that R(«,r) now denotes the open ball of radius r
at  and V(-) the volume of a set.
Theorem 2: Under the assumption that the discretiza-
tion of the space does not influence the placement of the
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Fig. 4: Progression of the algorithm in 2D Euclidean space. The background color indicates the distance to the
next sample (i.e., the distance matrix D). The white crosses and dots show the processed border points and actual

samples respectively.

samples, Alg. [2 dispersion can be bounded by
nV(R(x,dn/2)) < V(X) (8)

where d,, denotes the dispersion defined for a distance
function dist as in Eq. |5, when n samples have been
picked, i.e., |S| = n. This yields for the D-dimensional
Euclidean case an asymptotic behavior of

dy €O (n_l/D) 9)

and the driftless control-affine case

dy €0 (n_l/D) (10)
with D = Zil w;, where w; are the weights of the
boxes approximating the reachability space for driftless
control-affine systems (see ball-box theorem [12], [2]).

Proof: To prove the asymptotic behavior of the algo-
rithm, let us consider the case in which the discretization
of the space has no effect on the placement of samplesﬂ
The key argument to analyze the asymptotic behavior
of the algorithm is to realize that the nth sample is, by
construction, placed such that its distance to the closest
neighbor is d,,_1. Due to that, after n samples have been
picked, we can note that

dp—1 < min dist(z,y) < 2d,_1

Ve €S,
yeS\z

(11)

where the second inequality follows from the symme-
try and optimality assumption of dist. From the first
inequality it follows that (note that the ball is open)

R(xz,dp—1)NS =0 Vaxes. (12)

In addition, because of symmetry and optimality, the
intersection of all open balls of radius d,_1/2 must be

empty, i.e.,
N Rz, du1/2) = 0.
xzeS

(13)

Note that d,, < d,—; and with n samples being in S
we can state that

nV (R(xz,d,/2)) < V(X) (14)

2For brevity, we remove the explicit dist from the dispersion, but
it is implied to be the distance function used in the algorithm and
the reachable sets R.

must hold. To upper bound the dispersion for a number
of samples n we would optimally use an explicit term for
the volume V (R(w, d,,/2)), but if no such term exists (as
for general sub-Riemannian balls), we need to use a lower
bound, for example by using the ball-box theorem. Let
us first consider the case of a D-dimensional Euclidean
space X. In that case we obtain

nad? < V(X) (15)
and thus
V(x)P ~1/p
n= 1/p1/D € o (” / ) (16)

with a > 0. This shows that in the Euclidean case,
the achieved asymptotic dispersion is the same as for lo
low dispersion sequences (e.g., Halton). For the driftless
control-affine case we can use the same argumentation
as in [19]. Under the assumption that the system is
sufficiently regular we can find a parameter A, such
that

d
w n C
Box (a:, 2Amax) C R(x,dn/2) (17)

and according to Lemma II.2 by Schmerling et al. [21]
the volume is given by

" d, d, \?
V(Box (az, 2Amax>> = (2Amax) (18)

with D = Zil w;. We can rewrite Eq. [14] as

dy \”
" ) <
n <2Amax> <V(X) (19)
and thus
V(X)YP2A, 0 _1b
dnSTEO<n ) (20)
| |

Note that if the number of samples approaches the
discretization of the space, they will actually converge
to a Sukharev grid [24]. Hence, in the Euclidean case,
the asymptotic dispersion is still O(n‘l/ D), but in
the general case, we would need to inner-bound the
reachable set with a Euclidean ball, which would lead



to rather crude approximations as shown by Janson et
al. [3] for the linear affine case. Thus, especially for
nonholonomic systems, a grid of high resolution may
be important to capture the shape of the reachable sets.
Fig. plnumerically compares the dispersion for the Reeds-
Shepp case after n samples for i.i.d., Halton and the
proposed approach.

Given that our set S has the same asymptotic dis-
persion as Iy low dispersion sequences, our approach
retains the asymptotic analysis carried out in [3], [19]
and it allows the usage of a PRM* connection radius
T € w(n=P).

IV. Evaluation

In this section we describe the experiments to eval-
uate how our approach performs in terms of planning
efficiency and path quality compared to a set of baselines.

To this end, we design two main experiments. In the
first experiment, we compare our approach against the
baselines (uniform i.i.d. samples, Halton samples [§],
Poccia’s approach [19], state-lattice approach [18]) for a
car-like kinematic systems (i.e., Reeds-Shepp (RS) [20]),
over a subset of maps from the benchmark moving-ai
[22], i.e., city maps, see Fig. [7] for example maps. The
benchmark contains maps with several narrow corridors,
and the planner needs to perform complex maneuvers
(i.e., fully exploiting the full maneuverability), to let the
car achieve its goal. We use a minimum turning radius
p =5 m and plan in environments of different size with
w being the width of the map. For the state lattice, sets
of motion primitives have been chosen after an informal
validation and are shown in Fig. [6] The actual dispersion
is reported as dys and the number of drawn samples as
TNall-

In the second experiment, we compare the approach to
the baselines on a set of randomized maps and random
planning queries. To show the general applicability of
the algorithm we also benchmark it for a 6D kinematic
chain in the 2D plane (comparing it to Halton sequence
and i.i.d. samples). In this case, each joint either has
an angle 6; € [—3,3] with ¢ = 1,...,6, or we plan in an
identified space (i.e., the arms can wrap around) with
0; € [—m,m]/ ~. We use as distance function the 2-norm
in joint space (respecting the possible identification).

In both experiments we evaluate the approach in
terms of cost (i.e., path length) and success rate, and
show planning efficiency by plotting the cost progression.
Additionally we compare the trend for the dispersion
(Eq. @ conditioned on the number of samples for the
car-like kinematics, obtained by our approach and the
different baselines, see Fig.

We use OMPL [23] and adopt its PRM* imple-
mentation (we made it deterministic by removing the
random walk expansion step), with the default k-nearest
connection strategy of k, = e(1+1/D)logn, which
ensures asymptotic optimality for all the samplers. The
same nearest neighborhood search and collision checkers

0.631 —iid.
—— Halton

Dispertio

0.398

\
0 200 400 600 800
m

\
1,000

Fig. 5: Dispersion trend for the Reeds-Shepp case (n =
1.0, obstacle free environment). Our approach obtains
a better dispersion than the baselines, thus achieving a
better coverage of the state space as also shown in Fig.

(a) 2m grid

(b) 5m grid

Fig. 6: The motion primitive sets, used for the state
lattice approaches in Table [a] and [Tb] respectively.

(only different for examined systems) are used for all
experiments and they are run on a machine with Xeon

E5-1620 CPU and 32GB of RAM.

V. Results and Discussion

We collect the evaluation’s results in Tables [Nl The
tables’ scores report how often an approach (on the table
row) generates a better solution than another (on the
table column). Whenever an approach is better, the score
was changed by +1, by 0 for a draw (i.e., both fail to find
a solution), and —1 if the approach yielded the higher
cost. Results are shown for different ratios n = p/w. In
Table[l} a green cell highlights that the approach on the
table row has a better performance of the one indicated
on the table column, red otherwise. Table [[] reports only
the scores obtained by Dispertio against the baselines.

Experiment 1) Table[l| shows the results of the first ex-
periment considering 13 maps with 50 queries each (i.e.,
a total of 650 planning queries, thus results have been
normalized with opanq = \/@) Overall our approach
achieves better costs and a higher success rate compared
to the baselines. In general, Halton is the second best
placed. State-lattice performs poorly, indicating that
more effort is required for their motion primitives design
(i-e., possibly also using a notion of dispersion in control
space). Fig. m shows an example planning query for
i.i.d., Halton sampling and our approach. It reports the
obtained paths, the trend for the success rate and the
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(d) Success rate (e) Cost

ii.d. Halton  Poccia  Dispertio  Lattice
iid. . -3.41 -3.06 -5.33 21.93
Halton 3.41 -0.08 -1.26 22.28
Poccia 3.06 0.078 -1.06 21.53
Dispertio 5.33 1.26 1.06 . 22.75
Lattice -21.93 -22.28 -21.53 -22.75 .
(a) PRM*, Reeds-Shepp, n = 0.1, nan = 5000
ii.d. Halton  Poccia  Dispertio  Lattice
iid. . -4.79 -4.04 -9.18 21.69
Halton 4.79 1.26 -4.31 23.3
Poccia 4.04 -1.26 -4.98 23.06
Dispertio 9.18 4.31 4.98 . 23.65
Lattice -21.69 -23.3 -23.06 -23.65 .

(b) PRM*, Reeds-Shepp, n = 0.05, nan = 3200

TABLE I: Path quality results of all the methods for the
city-maps benchmark [22]. Dispertio obtains on average
better solutions against all the baselines.

Fig. 7: Qualitative comparison of i.i.d., Halton and Dis-
pertio. The top row shows example paths obtained after
1500 valid samples connecting starts (in red) with goals
(in blue). The gray footprints represent the roadmap’s
vertices. The bottom row shows success rate and cost for
this example.

cost progression. The blue range shows the minimum
and maximum cost observed in these runs for the i.i.d.
sampler. The cost results are only shown for success rates
of 100%. Cost and success rate progressions of Fig.
show how our approach is faster in getting an initial good
solution, and faster (as the number of samples increases)
in converging to lower cost solutions in those cluttered
and narrow scenarios.

Experiment 2) Table [II] shows the results for the
second experiment. They are normalized by opang =
4/1000, with 1000 being the the amount of random
planning queries. Also for the second experiment, our
approach achieves better performance in terms of final
cost solution even in higher dimensional spaces. Further-
more, in very cluttered environments (with n = 1.0)
our approach achieves on average a 10% higher success
rate than the baselines, indicating how it can better
exploit the knowledge of the nonholonomic constraints
(i.e., maneuvering capabilities) in narrower scenarios.

Moreover as reported in Fig. Dispertio has a
lower dispersion value at each iteration (i.e., numbers of
samples) than the baselines, mainly due to the fact that
it better exploits the knowledge of the system dynamics
(i.e., by using the steer function and the reachable set
computation).

VI. Conclusions

In this work we extend deterministic sampling-based
motion planning to the class of symmetric and optimal
driftless systems, by proposing Dispertio, an algorithm
for optimized deterministic sampling set generation.
When used in combination with PRM*, we prove
that the approach is deterministically complete and

i.i.d. Halton  Poccia
RS, 7 = 1, nay = 1500 487 411 31
RS, n = 0.25, nay = 1500 6.26 4.08 1.20
RS, n = 0.1, nay = 1500 10.69 6.7 2.47
RS, n = 0.05, nay = 1500 11.61 7.15 4.59
KC, {[-m, 7]/ ~}5, nay = 30000 = 2.28 1.01 .
KC, [-3,3]%, nan = 30000 7.78 7.78

TABLE II: Path quality performance of Dispertio against
the baselines, on randomized maps and queries in differ-
ent spaces (Reed-Shepp and 6D Kinematic Chain).

retains asymptotic optimality. In the evaluation, we show
that our sampling technique outperforms state-of-the-art
methods in terms of solution cost and planning efficiency,
while also converging faster to lower cost solutions. As
future work, we are interested in extending the approach
towards non-uniform sampling schemes, for example to
exploit learned priors, and to systems with drift.
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