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Abstract

Recently, various methods for 6D pose and shape estimation of objects at a per-category level have been proposed. This
work provides an overview of the field in terms of methods, datasets, and evaluation protocols. First, an overview of
existing works and their commonalities and differences is provided. Second, we take a critical look at the predominant
evaluation protocol, including metrics and datasets. Based on the findings, we propose a new set of metrics, contribute
new annotations for the Redwood dataset, and evaluate state-of-the-art methods in a fair comparison. The results
indicate that existing methods do not generalize well to unconstrained orientations and are actually heavily biased
towards objects being upright. We provide an easy-to-use evaluation toolbox with well-defined metrics, methods, and
dataset interfaces, which allows evaluation and comparison with various state-of-the-art approaches (https://github.
com/roym899/pose and shape evaluation).
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1. Introduction

Estimating an actionable representation from raw sen-
sor data is a long standing problem at the intersection of
robotics and computer vision. Classic grasp and motion
planning algorithms often assume full knowledge of the
environment, making them difficult to apply with partial
sensor information or requiring elaborate setups to acquire
the necessary data. To bridge this gap from limited sensor
data to an actionable representation of the environment
various algorithms have been proposed often aiming at es-
timating various object-based quantities, such as bounding
boxes, masks, poses, and shapes.

In this work, the problem of categorical1 pose and
shape estimation is considered. Originating from pose esti-
mation of known object instances (in which the shape and
appearance is known a priori), categorical pose and shape
estimation aims to generalize to arbitrary shape and ap-
pearance variations within a category, while still arriving
at a posed mesh (i.e., a full object mesh and its pose align-
ing it with the sensor data) of an object of interest.

Compared to just estimating bounding boxes or in-
stance masks, estimating the full shape and pose of objects
promises to further close the gap from partial sensor infor-
mation to an actionable representation. While pure shape
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estimation can be sufficient for some tasks [1], categorical
pose estimation further provides a per-category reference
frame (see Section 3) that can be used in downstream
tasks, such as aligning objects [2] and pose-dependent
grasp computation (e.g., an upside-down mug has to be
grasped differently from an upright mug).

In the last two years, various learning-based categorical
pose and shape estimation methods have been proposed.
With a large number of changes between different works
(i.e., varying loss functions, network architecture, train-
ing protocols, etc.) the main contributions of individual
works and their relation to prior work can become hard
to identify. We provide an overview of existing methods
and identify notable commonalities and differences, which
so far have been less discussed in the literature.

Regarding datasets, most of the current methods are
trained and evaluated on the two datasets proposed by
[3], called CAMERA and REAL. The CAMERA dataset
is a large dataset of real RGB-D tabletop scenes with
synthetic objects superimposed on top of the table. The
REAL dataset is a smaller real-world dataset of tabletop
sequences with objects that have been scanned and tracked
for the purpose of evaluating categorical pose estimation.
Notably, both datasets only contain upright objects, which
opens the question of how well existing methods generalize
to less constrained settings.

To answer this question, we contribute a set of an-
notations to evaluate unconstrained 6D pose and shape
estimation. Our annotations consist of meshes and poses
for handheld objects of three categories in the Redwood
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dataset [4]. The objects in this dataset are freely rotated
in front of the camera by a human hand causing occlu-
sions. The orientations vary significantly more than in the
datasets by [3].

Most methods evaluate pose estimation by following
the same evaluation protocol as originally proposed by [3].
The method in [3] combines mask detection and pose esti-
mation into a single network and therefore evaluates pose
estimation with average precision (AP), which is a com-
mon detection metric. However, many of the subsequent
methods assume that the mask is an input to their method,
making AP an unnatural evaluation metric, as it makes
the results unnecessarily difficult to interpret. Therefore,
we propose a set of simpler metrics that use ground-truth
masks and categories to evaluate pose estimation.

Pose estimation with shape reconstruction was first
demonstrated by [5] and [6]. Both methods indepen-
dently used chamfer distance as their reconstruction met-
ric, which is now commonly used by methods performing
shape reconstruction. However, [7] showed that chamfer
distance is not a good measure of reconstruction quality
and other metrics better correlate with perceived recon-
struction quality. Therefore, in this work, we advocate for
the use of F-score to evaluate reconstruction quality and
propose a new evaluation protocol for both shape recon-
struction and pose estimation.

To summarize, our contributions are:

• an extensive overview of existing methods for cate-
gorical pose and shape estimation,

• a well-defined evaluation protocol,

• a challenging set of annotations to evaluate uncon-
strained pose and shape estimation,

• a fair evaluation of various state-of-the-art methods,
and

• an open-source evaluation toolbox for categori-
cal pose and shape estimation including methods,
datasets, and metrics.

2. Related Work

Since the introduction of the BOP benchmark suite
[8], great progress has been made in the task of instance-
level pose estimation, where a mesh of the target object is
available. However, the more general task of category-level
pose estimation has only recently received more attention.
Compared to instance-level pose estimation, category-level
pose estimation is more challenging due to the large pos-
sible variations in shape and appearance.

Wang et al. [3] introduced the first deep learning-based
method to address the 6D pose estimation problem at
the per-category level. They introduced two datasets:
CAMERA, a synthetic dataset that combines real scenes
with meshes from the ShapeNet dataset [9] and REAL,

a smaller real-world dataset that is mainly used for fine-
tuning and evaluation. Their method is based on the nor-
malized object coordinate space (NOCS), in which objects
of one category have a common alignment. The projection
of the NOCS coordinates in the image plane (also called
NOCS map) is predicted by extending Mask R-CNN [10]
with an additional head. From this prediction, the 6D pose
and scale can be estimated by employing the Umeyama al-
gorithm [11] with RANSAC [12] for outlier removal.

In [3], the NOCS map was predicted using only RGB
information. Since geometry typically varies less than ap-
pearance for a fixed category, several methods were pro-
posed to more directly incorporate the observed point set
into the prediction. Chen et al. [5] introduced canoni-
cal shape space (CASS), which refers to a latent shape
representation learned in a variational autoencoder [13]
framework. Their method regresses the latent shape, ori-
entation, and position directly from the cropped image
and the set of observed points. As a byproduct of their
method, they also reconstruct the full canonical point set.
Tian et al. [6] introduced shape prior deformation (SPD),
which uses a canonical point set and predicts a deforma-
tion based on the observed RGB-D information.

Various follow-up works modify SPD’s network ar-
chitecture and training scheme to achieve further im-
provements. For example, CR-Net [14] uses a recur-
rent architecture to iteratively deform the canonical point
set, SGPA [15] uses a transformer architecture to more
effectively adjust the canonical point set, and DPDN
[16] employs consistency-based losses for additional self-
supervised learning.

Another notable line of work follows an analysis-by-
synthesis approach. Analysis-by-synthesis approaches can
be seen as the category-level analog to mesh-based pose re-
finement [17, 18, 19, 20] for instance-level pose estimation.
Since at category-level no ground-truth mesh is available
for refinement, analysis-by-synthesis approaches typically
integrate a generative shape model into the pipeline to
jointly optimize a latent shape representation and the 6D
pose at inference time.

Chen et al. [21] proposed the first such analysis-by-
synthesis framework in which the latent representation of
a generative model is iteratively optimized to fit the ob-
served color image. The generative model allows to gen-
erate novel views of the object, but a full reconstruction
is not readily available. Instead of minimizing the RGB
discrepancy, iCaps [22] and SDFEst [23] perform iterative
optimization based on the depth observation. A full RGB-
D-based optimization is proposed in [24].

Aside from these RGB-D-based methods, a few RGB-
based methods have been proposed. Manhardt et al.
[25] estimate pose and a point set from monocular im-
ages. While their method only uses RGB information
during inference, they show that unannotated depth data
can be used to close the synthetic-to-real domain gap in
a self-supervised fashion. Going beyond point set-based
shape representations, Lee et al. [26] extend Mesh R-CNN
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[27] to predict pose and mesh from a single RGB image,
while Engelmann et al. [28] propose shape reconstruction
in a representation-agnostic way by classifying the closest
matching object from a database.

Other methods such as [29, 30, 31, 32, 33] predict pose
and bounding box without reconstructing the full shape of
the object. For the evaluation presented in this work, we
limit ourselves to methods that perform both reconstruc-
tion and pose estimation, although our evaluation protocol
could in principle be used for pure pose estimation meth-
ods as well.

Other works perform shape estimation on video se-
quences. FroDO [34] employs DeepSDF [35] to represent
the shape and uses tracked keypoints from an RGB video
to optimize the latent shape description such that the key-
points lie on the 0-isosurface of the signed distance field.
NodeSLAM [2] uses the depth data to optimize the shape
of multiple objects and the camera pose jointly. Both of
these works simplify the pose estimation problem, by as-
suming objects to be upright on a planar surface.

In this work, the focus is on categorical 6D pose and
shape estimation methods, which do not explicitly con-
strain the poses. An extensive overview of existing meth-
ods is provided in Section 4.

Evaluation. The most established benchmark dataset for
categorical pose estimation is the REAL275 dataset pro-
posed by [3]. We will take a critical look at that dataset
in Section 5.2.1 and show that it only evaluates a con-
strained set of orientations, hiding inherent difficulties of
the task, such as multimodal orientation distributions. [3]
also proposed average precision as a metric to evaluate
pose estimation.

To evaluate shape reconstruction most papers cur-
rently use chamfer distance [36, 5, 6], which was introduced
to measure the difference of point sets by [37]. However,
Tatarchenko et al. [7] noted that chamfer distance is not
robust to outliers, in that outlier points can skew the re-
sulting metric based on their distance to the ground truth.
Therefore, the authors advocate using a robust thresh-
olded metric such as F-score [38] to measure the quality of
reconstruction.

3. Problem Definition

Let I ∈ RH×W×3 be an RGB image, D ∈ RH×W be
a depth map, and P ∈ R3×4 be the projection matrix of
the associated camera. Further, let Ti j be the homoge-

neous transformation matrix, that transforms a point pj

from frame j to frame i, that is, pi = Ti j pj . Note that

depending on the context, Ti j can also be interpreted as

the 6D pose of frame j in frame i. Let Ri j and ti j further
denote the rotation matrix and translation vector of which
Ti j is composed.

We will use o to denote the object’s coordinate frame
and c to denote the camera’s coordinate frame. We will

use O to denote a 3D object and B(O) to denote the axis-
aligned bounding box of O in O’s frame o. We define the
origin of frame o as the center of B(O). We assume that 3D
objects and bounding boxes are defined such that trans-
forms can be applied to them, for example, Oc = Tc oO.
Following this notation, note that there is a difference be-
tween B( Oc ) and Tc oB(O). The first one is an axis-aligned
bounding box (AABB), the second is an oriented bounding
box (OBB).

Problem 1. (Categorical Pose and Shape Estimation)
Given (I,D,P) imaging an object O of known category
c at pose Tc o, and given the mask M of visible points of

the object in the image, find estimates Õ and T̃c o of O
and Tc o, respectively.

Similarly, one could define the problems of categori-
cal pose estimation (estimate Tc o only) and categorical
pose and size estimation (estimate Tc o and B(O)). Ex-
tensions to multiple images are possible by introducing a
world coordinate system, but are not further considered in
this work.

Note that Problem 1 only applies to object categories
for which a reference frame can be defined. For example,
for mugs the orientation can be defined by the opening and
handle, while the position can be defined as the center of
the tight bounding box. Similar definitions are possible
for many human-made objects. However, objects without
a well-defined category or significant intra-category varia-
tions exist. For such objects pure shape estimation such
as demonstrated in [39] is more applicable.

4. Methods

An overview of proposed methods to solve Problem 1
and their most notable differences is given in Table 1. Only
methods that estimate both pose and shape and do not re-
quire an initial pose estimate are included. Therefore, pure
categorical pose estimation methods such as [3, 29, 33, 59]
are excluded; tracking methods that require an initial pose
estimate such as [60, 61, 62] are excluded; and finally,
methods that explicitly rely on objects being upright such
as [34, 2, 63] are excluded.

Notably, only SDFEst [23] supports multi-view setups,
only iCaps [22] supports tracking over time, and only
three methods include the detection part in their pipeline
[25, 50, 24]. The other methods assume that an off-the-
shelf detector (typically Mask R-CNN [10]) is available,
but do not train it end-to-end with the pose and shape
estimation part. This observation prompts us to question
the predominant average precision-based evaluation pro-
tocol (see Section 5).

We note that in some circumstances modular pipelines
can be more desired than end-to-end pipelines. For exam-
ple, by training the detection part separately from the pose
and shape estimation part, larger detection-only datasets
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Table 1: Overview of categorical pose and shape estimation methods sorted by publication date. URLs to open-source implementations
are included in the references. Bold methods are included in our toolbox and evaluation. See text for further explanation and discussion.

Method Input Shape
Symmetry

Handling

Properties∗ Open source†

Notes
Det. MV Tr. Infer. Train

CPS++ [25] RGB Point set CD [18] 3 7 7 7 7
Self-supervised sim-to-real (mask,
depth)

Chen et al. [21] RGB Novel views Input 7 7 7 3 3 RGB-only analysis-by-synthesis

CASS [5] RGB-D Point set CD [18] 7 7 7 3 7
Variational autoencoder [13] to learn
canonical shape space

SPD [6] RGB-D Point set Norm. [40] 7 7 7 3 3 Deformation of shape prior

SAR-Net [41] D Point set Norm. [40] 7 7 7 3 3 Symmetry-based shape completion

DISP6D [42] RGB Novel views Codebook [43] 7 7 7 3 3 Implicit shape and pose learning

CR-Net [14] RGB-D Point set Norm. [40] 7 7 7 3 3 Recurrent extension of SPD [6]

Lee et al. [26] RGB Mesh Norm. [40] 7 7 7 7 7 Monocular metric mesh estimation

SGPA [15] RGB-D Point set Norm. [40] 7 7 7 3 3 Transformer extension of SPD [6]

6D-ViT [44] RGB-D Point set Norm. [40] 7 7 7 O O Transformer-based feature extraction
for SPD [6]

ACR-Pose [45] RGB-D Point set Norm. [40] 7 7 7 7 7 Adversarial extension of SPD [6]

ASM-Net [36] D Point set CD [18] 7 7 7 3 7 Active shape models [46]

iCaps [22] D Cont. SDF Codebook [43] 7 7 3 3 3
Alternating pose refinement and shape
estimation over time

He et al. [47] D Mesh CD [18] 7 7 7 7 7 Fully self-supervised (depth)

GPV-Pose [32] D Point set Sym. axis [29] 7 7 7 3 3
Consistency-based losses and pointwise
bounding box prediction

OLD-Net [48] RGB Point set Norm. [40] 3 7 7 7 7 Monocular extension of SPD [6]

Peng et al. [49] RGB-D Cont. SDF Norm. [40] 7 7 7 3 3
Self-supervised sim-to-real (depth) with
DeepSDF [35]

CenterSnap [50] RGB-D Point set Norm. [40] 3 7 7 3 3
Single-stage detection, pose, and shape
estimation

RePoNet [51] RGB-D Point set Norm. [40] / CD [52, 53] 7 7 7 3 O Self-supervised sim-to-real (mask)

SDFEst [23] D Disc. SDF Disc. SO(3) 7 3 7 3 3 Depth-only analysis-by-synthesis

DPDN [16] RGB-D Point set Norm. [40] 7 7 7 3 3
Self-supervised sim-to-real (consis-
tency)

SSP-Pose [54] D Point set Sym. axis [29] / Min. [3] 7 7 7 7 7
Symmetry-aware and direct pose re-
gression extension of SPD [6]

ShAPO [24] RGB-D Cont. SDF Norm. [40] 3 7 7 3 3 RGB-D analysis-by-synthesis

RBP-Pose [55] D Point set Sym. axis only [29] 7 7 7 3 3
Integration of SPD [6] into GPV-Pose
[32]

gCasp [56] D Cont. SDF Min. [3] 7 7 7 3 3
Iterative optimization with semantic
primitives [57]

Zhang et al. [58] RGB-D Mesh CD [18] 7 7 7 3 3
Fully self-supervised (RGB, depth,
mask, consistency)

∗
Whether methods support detection (Det.), multi-view setups (MV) and tracking (Tr.) over time.
†

O denotes cases in which the paper mentions publishing the code, but it could not be found as of July 10, 2023.

can be leveraged, whereas combined training of the detec-
tion part and the pose / shape estimation part typically
requires annotations for both, which is harder to obtain at
a large scale. Therefore, not supporting detection should
not be seen as a major disadvantage for a given method.

Similar arguments can be made for tracking and multi-
view handling. For example, most methods could be com-
bined with a specialized tracking method such as [60] or
[61] to enable tracking over time. However, most of the
methods in Table 1 are purely discriminative in that they
regress pose and shape in a feed-forward manner. Such
methods are generally less flexible to extend to multi-view
settings than methods that include a generative shape
model in their pipeline, such as [5, 22, 23, 24, 56].

A notable line of work focuses on self-supervised ap-
proaches. Following the early work by Manhardt et al. [25],
most works [49, 51, 16] focus on self-supervised learning in

a sim-to-real context. That is, they first train in fully su-
pervised fashion on synthetic data, and subsequently fine-
tune without or with limited annotations on real data. He
et al. [47] and Zhang et al. [58] have proposed fully self-
supervised approaches that do not require initial training
on synthetic data. In general, methods in this category dif-
fer in the used modality (see Notes column in Table 1).
That is, methods formulate losses based on the depth data,
mask, various consistencies that should hold, or combi-
nations thereof. Self-supervised approaches are closely
related to analysis-by-synthesis approaches [21, 23, 24],
which often employ similar losses, however, to optimize
the estimate at inference time instead of the network at
training time.

Next, we will discuss two main dimensions in which
the methods differ. First, the utilized shape representation
and second, the handling of symmetries, and, in a wider
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sense, pose ambiguities.

4.1. Shape Representation

Various shape representations have been proposed in
the literature. Shape representations vary in downstream
usability (e.g., collision checking or grasp computation),
efficiency, and flexibility. The latter referring to the fact
that some representations can easily be converted into an-
other, whereas the conversion for others is more involved or
not well defined. Efficiency is often a trade-off with qual-
ity and depends on the employed hardware. Therefore, it
is difficult to make general statements about efficiency.

Point sets. Most methods use point sets of fixed size to
represent the shape. However, the exact way to predict
the point sets varies. Most methods follow SPD [6] and
predict an offset (often referred to as deformation) for each
point in a mean shape that is defined per category. Notable
exceptions are CASS [5], which instead uses a FoldingNet-
based [64] variational autoencoder [13] to predict the point
set, and ASM-Net [36] which regresses the parameters of
a previously learned active shape model [46].

Point sets have the disadvantage of being a sparse
shape representation and are therefore not a reliable rep-
resentation for collision detection or grasp computation.
Introducing an intermediate dense representation can al-
leviate this limitation; however, conversion quality is lim-
ited by the density of the point set. In our experiments,
we observe that some methods predict outlier points or
non-uniform point sets (i.e., uneven density). In general,
high uniform density, and outlier-free point sets improve
the downstream usability.

Meshes. Lee et al. [26] follow Mesh R-CNN [27] and rep-
resent the shape as a mesh. Since meshes are difficult to
parameterize directly, Mesh R-CNN first predicts a dis-
cretized occupancy grid, which defines the topology of the
mesh. This mesh is subsequently refined (similar to the
deformation approach for point sets) through multiple re-
finement stages. Meshes are a dense surface representation
and are hence well-suited for geometric downstream tasks.

Novel views. Instead of explicitly regressing the shape,
Chen et al. [21] and DISP6D [42] employ neural networks
that generate RGB and optionally depth views given a
latent shape representation and viewing direction. In con-
trast to neural field representations (see Continuous SDFs
below), multi-view consistency is not enforced by these
methods, that is, there is no guarantee that the result-
ing views are consistent with each other. In principle,
generated views can be converted to point sets or other
representations by employing reconstruction methods on
multiple synthesized views. However, this has not been
demonstrated in any of the aforementioned works. There-
fore, generating novel views on its own is typically not
sufficient for many downstream tasks.

Discretized SDFs. SDFEst [23] represents shape as a dis-
cretized signed distance field of fixed resolution. Similar to
[5] a variational autoencoder is trained to learn the shape
model. Compared to point sets and novel views, signed
distance fields can readily be used for collision detection
and grasp computation. Furthermore, the 0-isosurface of
a signed distance field can be converted to a mesh using
the marching cubes algorithm [65].

Continuous SDFs. Following promising research on neural
fields [66] for shape representation [35, 67, 68], iCaps [22],
ShAPO [24], and gCasp [56] employ SDF-based neural
fields in the context of categorical pose and shape estima-
tion to represent the shape. Neural fields are coordinate-
based neural networks (e.g., fθ : R3 7→ d) that for a given
3D coordinate predict a value (in this case the signed dis-
tance to the closest surface) at that coordinate. By con-
ditioning such fields on a latent vector, they allow inter-
polation between shapes and mesh extraction at arbitrary
resolution using the marching cubes algorithm [65].

4.2. Symmetry Handling
A major difference between existing methods is their

approach to handle ambiguities. Ambiguities can occur
at a category-level (e.g., bowls and bottles typically have
a symmetry axis), but also due to occlusions (including
view-dependent self-occlusion). In principle, such ambigu-
ities require learning a one-to-many mapping [69]. How-
ever, most approaches assume one-to-one mappings, which
creates issues at training time when different targets occur
for the same or similar inputs. In general, the ideal predic-
tion for networks that can only predict a single estimate is
poorly defined, when presented with contradicting targets,
and therefore they typically fail to converge to a correct
pose estimate.

Different approaches to this issue have been proposed,
requiring various levels of annotation and providing var-
ious degrees of flexibility. Some approaches only handle
predefined category-level symmetries, whereas other ap-
proaches can, in principle, handle general ambiguities. The
first being likely more data-efficient, however, only ap-
plies to constrained settings, the latter being more general.
Here we summarize the different approaches and discuss
their respective advantages and disadvantages.

Normalization. One way of handling symmetries at a per-
category level is to introduce a constraint that removes the
degree of freedom around the symmetry axis leaving only
one correct orientation. This approach and an analytic
solution has first been proposed for instance-level pose es-
timation by Pitteri et al. [40] and has subsequently been
introduced to category-level pose estimation by Tian et al.
[6]. Most works in the field that employ NOCS to estimate
the object pose adopt the same symmetry handling. This
approach has two practical disadvantages: it requires a pri-
ori specified category-level symmetries, and it cannot han-
dle other forms of ambiguities. The former makes the as-
sumption that all instances of a category exhibit the same
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axis-symmetry, which might not be the case. This could be
alleviated, by per-instance symmetry annotations, which,
however, requires additional annotation effort. The latter
creates an issue when training on less constrained datasets.
For example, when side-views of mugs are included, there
can be two contradicting targets for such views. However,
for view-constrained datasets with consistent per-category
symmetries like the REAL275 dataset, this approach rep-
resents an efficient way of making an ambiguous dataset
unimodal.

Minimum. Wang et al. [3] proposed to handle symmetries
by generating multiple ground-truth targets by rotating
the ground-truth pose around the predefined symmetry
axis in discrete steps. The loss will then be computed for
each target, and only the smallest of these losses will be
used to update the weights. Compared to the normaliza-
tion approach, this approach introduces a small overhead
at training time. Furthermore, an ambiguous interval re-
mains due to the discrete nature of the approach.

Symmetry axis. Following FS-Net [29] some approaches
[32, 54, 55] tailor the orientation representation to the
predefined axis-symmetries. Specifically, these methods
parameterize the rotation by two axes (similar to [70]),
which is sufficient to construct a rotation matrix (i.e., the
third vector must be orthogonal to the first two). For ob-
jects with category-level symmetries, one of the axes will
be defined as the symmetry axis (e.g., the up-axis of a bot-
tle), and only that one is supervised during training and
used during inference.

Chamfer distance (CD). Instead of directly supervising
the pose, some methods [5, 36] employ chamfer distance
(see Section 5.1.1 for definition) between transformed
point sets as their loss function. Since the chamfer dis-
tance is based on the minimum distance between nearest
neighbors, it automatically handles symmetries. However,
chamfer distance as a loss function introduces local min-
ima that do not exist for direct pose supervision, which
can yield undesired solutions.

Codebook. Codebook-based pose estimation was intro-
duced by Sundermeyer et al. [43] in the context of instance-
based pose estimation. In short, an autoencoder is trained
on synthetic data, which learns to reconstruct a given in-
put image. Indistinguishable views will map to the same
points in the latent space. A codebook is stored, which
maps orientations to the corresponding latent representa-
tion. At inference time, the orientation can be inferred
by finding the closest stored latent representation (and its
associated orientation) to the encoded input. This ap-
proach automatically learns any form of ambiguity and
has been adapted to categorical pose estimation by iCaps
[22] and DISP6D [42]. iCaps uses a categorical reference
object when training the decoder (i.e., implying category-
level ambiguities), whereas DISP6D modifies the codebook

at inference time, which in principle supports inference of
object-level ambiguities.

Input. As discussed in the beginning of this section, one-
to-many mappings are more difficult to learn. However,
many-to-one mappings are well defined and, therefore, eas-
ier to learn. Chen et al. [21] propose a network that takes
as input a latent shape description and the pose of the
object and predicts the expected RGB view. To infer the
pose, a large number of poses need to be sampled, and
the resulting RGB image is compared with the observed
one. While simplifying the learning, inferring the pose
using such a network is more difficult and less efficient
than with feed-forward approaches. However, similar to
the codebook approach, all ambiguities are, in principle,
supported, and no symmetry annotations are required.

Discretized SO(3). SDFEst [23] proposes to estimate the
orientation by classifying into which cell of a discretized
SO(3) grid the orientation falls. Similar to the codebook
approach, this approach is, in theory, capable of handling
general forms of ambiguities, since it learns all ambiguities
purely from data and can represent arbitrary distributions
over SO(3). A downside of this approach is that learning
such a classification is likely less data-efficient compared
to implicit rotation learning with a codebook as noted by
[43].

4.3. Methods Evaluated

Next, we will summarize the categorical pose and shape
estimation methods that are included in our evaluation.
We limited ourselves to methods which are available open-
source and perform both pose and shape estimation.

CASS. Canonical shape space (CASS) [5] represents one
of the first methods for estimating pose and shape. It
models the shape using a generative model (based on
a variational autoencoder [13]) and regresses the pose,
parametrized by a rotation matrix and translation. In
contrast to most NOCS-based methods (see below), the
pose is predicted in a correspondence-free manner, with-
out the need for subsequent alignment with the Umeyama
algorithm [11].

SPD. Shape prior deformation (SPD) [6] forms the basis
of many subsequent methods. It is based on a categori-
cal prior shape (represented as a point set) and predicts
an offset (i.e., a deformation) for each point in the prior
shape based on the observed image crop and masked 3D
points. In addition, the method predicts an assignment
matrix, assigning each observed point to a point in the
prior shape. The assignment and deformation yield points
in the NOCS [3] which can be used to retrieve the similar-
ity transform (i.e., 6D pose and scale) using RANSAC with
the Umeyama algorithm. Approaches following this ap-
proach are also referred to as correspondence-based, since
dense correspondences between points in the observation
and in a reference space (i.e., NOCS) are established.
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CR-Net. Wang et al. [14] generally follow SPD [6] to rep-
resent the shape and estimate the pose, but modify the
network architecture to iteratively deform the prior shape
instead of predicting the full deformation in a single step.

SGPA. Structure-guided prior adaptation (SGPA) [15]
also follows SPD [6] to represent the shape and esti-
mate the pose, however, they make several architectural
changes. Most notably, PointNet++ [71] is used to ex-
tract features from the prior shape and input point sets,
and a transformer is used to extract features to estimate
the deformation and assignment matrix.

ASM-Net. Akizuki and Hashimoto [36] propose to repre-
sent the shape using active shape models (ASM) [46]. To
predict the pose, ASM-Net uses a correspondence-free es-
timation approach similar to CASS [5]. Compared with
other works, they further use the iterative closest point
(ICP) algorithm to align their estimated shape with the
observed points.

iCaps. Deng et al. [22] proposes a pipeline for pose and
shape estimation focused on tracking an object over time.
It is the first method to use a coordinate-based neural field
representation (DeepSDF [35]) in the context of categor-
ical pose and shape estimation. The approach alternates
between shape estimation given a pose and pose optimiza-
tion given the shape. In this way, it iteratively optimizes
the pose and shape estimates. We only evaluate iCaps’
single-view performance for fair comparison.

SDFEst. Bruns and Jensfelt [23] describe a two stage
pipeline for depth-based estimation of pose and shape. In
the first stage the coarse pose and shape is estimated. In
the second stage, these estimates are refined in a render-
and-compare fashion. Similar to iCaps, SDFEst uses
signed distance fields to represent the shape, however, a
discretized representation is used instead of a coordinate-
based neural field representation. The approach is trained
using only synthetic data and only uses depth informa-
tion for pose and shape estimation. Furthermore, the re-
finement step readily supports optimization with multiple
views. However, similar to iCaps, we only evaluate the
single-view performance for fair comparison.

DPDN. Deep prior deformation network (DPDN) [16] fol-
lows SGPA [15] in using PointNet++ [71] as their under-
lying feature extractor. Their network follows SPD [6] in
predicting an assignment and deformation, however, pose
estimation is learned instead of solved using the Umeyama
algorithm. This allows them to directly supervise the pose,
instead of just the assignment matrix. Furthermore, self-
supervised learning is employed by augmenting the input
point sets in two different ways, which enables the use of
a consistency loss when no ground truth is available.

RBP-Pose. RBP-Pose [55] generally follows FS-Net [29] in
directly regressing the pose in a correspondence-free man-
ner, but extends it with shape reconstruction and various
additional losses. In particular, the pose is estimated by
two parallel branches: first, by a simple regression branch
(like FS-Net [29]); second, by predicting the deformation
and assignment (like SPD [29]) and subsequently the resid-
ual pointwise bounding box projections (hence RBP; see
[32] for details on pointwise bounding box projection).
The second part can be interpreted as an additional re-
finement step, based on the previously predicted pose and
shape. This second branch is, however, only used for addi-
tional supervision during training; during inference, only
the correspondence-free pose regression is used and op-
tionally the shape deformation branch can be evaluated to
retrieve the shape reconstruction.

5. Evaluation Protocol

In this section, the existing and proposed evaluation
protocol will be discussed. Following the notation intro-
duced in Section 3, we will start by introducing the met-
rics that define the evaluation protocols; subsequently the
evaluation datasets are discussed.

5.1. Metrics

Various metrics exist to assess how well a method solves
Problem 1. Currently, the predominant evaluation metric
is average precision [3, 5, 14, 15, 36, 31, 29, 26] for pose
estimation and chamfer distance [37, 5, 14, 15, 36, 26] for
shape reconstruction. In this section, we will introduce
these metrics and discuss several issues with them. Sub-
sequently, we will advocate for accuracy (contrary to av-
erage precision) and F-score to evaluate pose estimation
and shape reconstruction, respectively.

We first define similarity measures for transforms and
objects. These are later used to define the evaluation met-
rics for Problem 1.

Definition 1. Let d( Tc o, T̃c o) denote the translation er-
ror between the ground-truth transform and the estimated
transform, that is,

d( Tc o, T̃c o) = ‖ tc o − t̃c o‖2. (1)

Definition 2. Let δ( Tc o, T̃c o) denote the rotation er-
ror between the ground-truth transform and the estimated
transform, that is,

δ( Tc o, T̃c o) =

∣∣∣∣∣ trace( Rc o R̃c −1
o )− 1

2

∣∣∣∣∣ . (2)

Definition 3. Let IoU(B1,B2) denote the true intersec-
tion over union (IoU) of two oriented bounding boxes [72].
Further, let the axis-aligned IoU between two objects be
defined by

IoU+( Oc , Õc ) = IoU
(
B( Oc ),B( Õc )

)
, (3)
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and the true (oriented) IoU using oriented bounding boxes
by

IoU( Oc , Õc ) = IoU
(

Tc oB(O), T̃c oB(Õ)
)
. (4)

B( Tc oO)

B( T̃c oÕ)

(a) Axis-aligned IoU

Tc
oB(O)

T̃c o
B(Õ)

(b) Oriented IoU

Figure 1: Visualization of axis-aligned IoU and true (oriented) IoU
in 2D. Note that axis-aligned IoU is less accurate and depends on
the object shape.

The difference between these two IoU definitions is vi-
sualized in Figure 1. The current evaluation protocol [3]
uses axis-aligned IoU+ instead of oriented IoU, although
the former is less accurate. Our implementation follows
[72] and computes oriented IoU.

5.1.1. Chamfer Distance

In the context of shape reconstruction, chamfer dis-
tance was introduced by [37] to differentiably measure the
difference of point sets.

Definition 4. Let S ⊂ R3 and S̃ ⊂ R3 denote point sets
sampled from the surfaces of O and Õ, respectively. We
define chamfer distance as

CD(S, S̃) =
1

2
AD(S → S̃) +

1

2
AD(S̃ → S) (5)

based on the directed average distance

AD(X → Y) =
1

|X |
∑
x∈X

min
y∈Ỹ
‖x− y‖2. (6)

It is easiest to interpret as the mean Euclidean distance
from a point in one point set to the closest point in the
other set. Note that slightly different chamfer distance
versions exist, such as squared versions and ones using the
sum instead of the arithmetic mean.

In Figure 2(b) we visualize potential issues with cham-
fer distance as an evaluation metric. Consider the two
mugs with different handles (denoted 1 and 2) as re-
constructions of the mug without handle (denoted GT).
The relative quality of these reconstructions measured
by chamfer distance varies significantly depending on the
number of samples. Furthermore, a large number of sam-
ples is required for chamfer distance to converge.

Notably, the number of ground-truth samples is left
unspecified by most methods. This problem becomes fur-
ther amplified because methods perform reconstruction by
predicting a varying number of samples as noted by [36].

Furthermore, Tatarchenko et al. [7] note that chamfer dis-
tance is not robust to outliers, since it is an average of
distances (i.e., a single outlier can strongly influence the
metric). Therefore, we discourage further use of chamfer
distance for evaluation purposes.

Manhardt et al. [25] introduce a size-normalized recon-
struction metric, closely related to chamfer distance2.

Definition 5. Let S ⊂ R3 and S̃ ⊂ R3 denote point sets
sampled from the surfaces of O and Õ, respectively. We
define normalized average distance (NAD) as

NAD(S, S̃) = max

(
AD(S → S̃)

diam(S)
,

AD(S̃ → S)

diam(S̃)

)
(7)

based on the directed average distance (6) and the diameter
of the point sets

diam(X ) = max
x∈X

max
y∈X
‖x− y‖2. (8)

In general, this metric exhibits similar pitfalls as chamfer
distance, however, normalizing metrics (or, equivalently,
setting thresholds) based on the diameter can be a useful
tool for datasets with large size differences between ob-
jects.

5.1.2. Reconstruction F-Score

Tatarchenko et al. [7] introduced F-score in the con-
text of reconstruction as a robust alternative to chamfer
distance.

Definition 6. Let S ⊂ R3 and S̃ ⊂ R3 denote point sets
sampled from the surfaces of O and Õ, respectively. Given
an application-specific threshold ∆, we define reconstruc-
tion recall as

r∆(S, S̃) =
1

|S|
∑
x∈S

[
min
y∈S̃
‖x− y‖2 < ∆

]
(9)

and reconstruction precision as

p∆(S, S̃) =
1

|S̃|

∑
y∈S̃

[
min
x∈S
‖x− y‖2 < ∆

]
, (10)

where [·] denotes the Iverson bracket. Finally, we define
F-score as the harmonic mean of precision and recall

F∆ =
2

p∆(S, S̃−1) + r∆(S, S̃)−1
. (11)

2Manhardt et al. [25] introduced this metric as average distance
of predicted point sets in an already thresholded manner. We have
changed it to a non-thresholded metric, which can be thresholded
later, yielding the same result as the originally proposed metric. This
fits better into our formalism.
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(c) Reconstruction F-score

Figure 2: Visualization of the effect of varying number of samples on the chamfer distance (b) and reconstruction F-score (c). We consider two
reconstructions (denoted by 1 and 2) of the ground truth (denoted by GT). Note that particularly the relative difference between CD(SGT,S1)
and CD(SGT,S2) varies significantly. This is because the majority of the error stems from sparse sampling, not from actual differences in
geometry. All mugs have been scaled to be 10 cm tall.

Note that ∆ should be adjusted depending on the ap-
plication and the sensor. For the table-top items contained
in the datasets, we propose to use ∆ = 1 cm.

In Figure 2(c) we show F1cm for varying numbers of
samples for the meshes in Figure 2(a). F1cm converges
significantly faster than chamfer distance and can easily be
interpreted as the percentage of correct (i.e., error below
∆ = 1 cm) surfaces or points [7].

Due to these reasons, following [7], we advocate for us-
ing F-score instead of chamfer distance to evaluate shape
reconstruction. Furthermore, note that shape reconstruc-
tion can be evaluated in the object frame or in the camera
frame, taking into account Tc o and T̃c o. Previous works
evaluated in the object frame (i.e., assuming perfect align-
ment based on the canonical reference frame); however, we
believe it is better to evaluate posed reconstruction in the
camera frame, as it correlates more directly with down-
stream usability of the full estimate.

All metrics so far (i.e., d, δ, IoU, CD, NAD, and F∆)
assess the quality of a single estimate. Next, we discuss
average precision and accuracy, which attempt to sum-
marize a method’s performance on a dataset. In principle,
one could also compute different averages of the aforemen-
tioned metrics, but those are typically affected by outliers
and harder to interpret in comparison to thresholded eval-
uation metrics that classify estimates as correct or incor-
rect.

5.1.3. Average Precision

Average precision (AP) summarizes precision-recall
curves in a single value [73] and has been the standard
evaluation metric for object detection on the PASCAL
VOC [74] and COCO datasets [75]. In general, average
precision is calculated based on the interpolated precision-
recall curve, which is constructed by varying a confidence
threshold.

Wang et al. [3] proposed to use AP with different
thresholds on IoU+, d, and δ to evaluate their pose estima-
tion (all specified thresholds must hold for a prediction to

count as a true positive). Their method includes a Mask
R-CNN architecture to detect objects and therefore had
a confidence threshold to compute AP. However, most of
the following pose and shape estimation methods do not
include such a confidence threshold3. Instead they assume
M to be given as stated in Problem 1.

To still follow the same evaluation protocol as [3], all
other methods rely on the same, suboptimal Mask R-CNN
predictions that [3] provided. This protocol effectively lim-
its the achievable AP due to wrong classifications, missing
detections and poor masks. Furthermore, AP is inherently
difficult to interpret compared to simpler metrics.

Therefore, we believe that AP is ill-suited to compare
pose and shape estimation methods that do not include
detection. Rather, simpler metrics, such as accuracy (see
below), should be used, assuming that mask M and cate-
gory c are provided.

5.1.4. Proposed Metric: Accuracy

We propose to use accuracy, contrary to average preci-
sion, to assess categorical pose and shape estimation.

Definition 7. Given inputs (Ii,Di,Pi,Mi, ci), ground

truths (Oi, Tc i
o), and associated predictions (Õi, T̃c i

o) with
i = 1, ..., N , let accuracy be defined as

ACC =

∑N
i=1

[
c(Oi, Tc i

o, Õi, T̃c i
o)
]

N
, (12)

where [·] denotes the Iverson bracket and c determines
whether a prediction is correct or not based on a single
or multiple thresholds on d, δ, IoU, CD, NAD, and F∆.

Accuracy measures the percentage of correct estimates
based on thresholds on translation error, rotation error,
IoU, NAD and F-score. Note that we can use this simpler
metric instead of average precision because we decouple
pose estimation from detection and classification.

3Only methods marked Det. in Table 1 include a confidence
threshold.
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Table 2: Overview of categorical pose and shape estimation datasets. All datasets include RGB-D data and categorical
pose ground truth. Bold datasets are included in our toolbox and evaluation. See text for further explanation and
discussion.

Dataset #
In
st
an
ce
s

#
S
eq
u
en
ce
s

#
C
at
eg
or
ie
s

M
es
h
es

R
ea
l

T
ra
in

N
ot
es

CAMERA25 [3] 1085 31∗ 6 3 7 3 Synthetic objects on table

REAL275 [3] 36 13 6 3 3 3 Sequences of multiple objects on table

TOD [76] 15 600 3 3 3 3 Transparent objects on plane

PhoCaL [77] 60 24 8 3 3 3
Robotic ground-truth annotations; polarization data; transparent and reflec-
tive objects

Wild6D [51] 162 486 5 7 3 O† Dataset for self-supervised learning

REDWOOD75 15 15 3 3 3 7 Annotations for Redwood dataset [4]; objects freely rotated in hands

HouseCat6D [78] 194 41 10 3 3 3 Larger dataset following PhoCaL [77]; better viewpoint coverage
∗

31 different background scenes, 300K different object arrangements
†

Statistics for evaluation split with ground-truth poses; larger training split only has mask annotations

5.1.5. Run Time

The run time of a method is the time it requires to
infer the pose and shape for one object. In addition to its
mean, the minimum, maximum and variance or standard
deviation might also be reported, which can be meaningful
when methods exhibit large variances in run time.

It is important to note that the run time can vary for
different levels of optimization, and it is therefore strictly
speaking only an evaluation metric of a method’s imple-
mentation.

Furthermore, run time depends heavily on the used
hardware. Since our toolbox aims to make the baseline
results easily reproducible, it also simplifies reporting run
time comparisons on equal hardware.

5.1.6. Summary: Proposed Evaluation Protocol

We propose to evaluate categorical pose and shape es-
timation methods by calculating accuracy at a few infor-
mative thresholds of d, δ and F∆. Furthermore, this eval-
uation procedure can be adjusted for categorical pose es-
timation by using only d and δ and for categorical pose
and size estimation by using IoU instead of F∆. The
thresholds for these metrics must be adjusted based on
application requirements, sensor accuracy, and annotation
quality. Furthermore, when combining multiple thresh-
olds, care should be taken that they are roughly equally
strict.

Note that when evaluating δ and IoU, extra care must
be taken with respect to the categories containing symmet-
ric objects. We follow [3] and ignore rotations around the
up-axis for the bottle, bowl, and can categories. Further
issues with ambiguities are discussed in Section 7.

In addition, reporting the run time is encouraged tak-
ing into account the caveats mentioned in Section 5.1.5.

5.2. Datasets

An overview of existing datasets is given in Table 2.
So far, most methods have been evaluated on the synthetic

CAMERA25 dataset and on the smaller real-world dataset
REAL275 [3]. The transparent object dataset (TOD) [76]
focuses on transparent objects and provides the real erro-
neous depth data and depth data captured using opaque
twins of the transparent objects. The PhoCaL dataset
[77] is a larger, highly accurate dataset. Similar to the
REAL275 dataset, most objects are upright on a table (see
Section 5.2.1). However, it contains significantly more oc-
clusions, and some objects in unconstrained poses. The
recently released HouseCat6D [78] is a follow-up dataset,
that significantly improves with regards to limited view-
points. Finally, the Wild6D dataset [51] is a large-scale
dataset for self-supervised learning. However, it does not
contain ground-truth shapes, and is therefore not suited
to assess shape estimation methods.

Given its popularity in the literature, we evaluate on
the REAL275 dataset (see Section 5.2.1) and additionally
on the REDWOOD75 dataset (see Section 5.2.2). All of
REDWOOD75’s categories are included in the REAL275
dataset, which simplifies evaluation across datasets. While
not included in this evaluation, we note that PhoCaL,
TOD, and especially HouseCat6D are promising datasets
for future research on categorical pose and shape estima-
tion.

5.2.1. REAL275

The REAL dataset was proposed by Wang et al. [3]
and consists of 4300 training images (7 video sequences)
and 2750 test images (6 video sequences). An additional
validation set containing 950 images is mentioned in the
publication, but has not been made publicly available. The
dataset contains 6 categories (bottle, bowl, camera, can,
laptop, and mug) and contains 4 to 7 objects per scene.
Meshes for each object are provided, obtained using an
RGB-D reconstruction algorithm. Since we are primarily
interested in evaluation, we will focus on the evaluation
split, called REAL275, from here.

Figure 3 shows point sets with their corresponding
ground-truth annotations. Note that all objects are up-
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Figure 3: Examples of REAL275 samples for the 6 object categories.
Note that all objects are positioned upright on a table.

right on planar surfaces. Similar constrained orientations
can be found in the training splits of the CAMERA and
REAL datasets. Figure 5(a) visualizes the distribution of
orientations contained in the REAL275 dataset. Note that
such constraints, present in training and test data, can sig-
nificantly simplify the learning problem as pose and shape
ambiguities disappear (e.g., upright or upside-down can).

The REAL275 dataset was originally proposed for pose
estimation and was only later used to evaluate shape esti-
mates. However, the ground-truth meshes included in the
dataset are not complete. In particular, the whole bot-
tom is missing (Figure 4, red meshes at bottom), which
can cause correct estimates to be considered wrong. To
fix this, we manually completed the missing surfaces in
Blender [79] and include the fixed meshes in our toolbox.

5.2.2. Proposed Dataset: Redwood

To evaluate methods on less constrained orientations,
we contribute annotations for a set of images in the Red-
wood dataset [4]. The Redwood dataset contains se-
quences of handheld objects being freely rotated in front of
the camera. No ground-truth reconstructions are provided
for these sequences.

We annotated pose and shape for 3 categories (bottle,
bowl, mug) for 5 sequences each. These annotations were
created by manually creating OBBs in multiple frames and
exploiting potential symmetries of the object. Alignment
of OBBs with previous annotations was sped up and re-
fined by using the ICP algorithm. For each of the an-
notated sequences we took a subset of 5 frames covering
various orientations. We will refer to this set of annota-
tions as REDWOOD75.

To reconstruct the shape from the partially occluded
and noisy depth data, we start from a dense voxel grid
inside the bounding box and apply voxel carving using the
annotated frames to remove hands and other temporary
occlusions. The remaining voxel grid contains only voxels
that are not observed to be free in any of the annotated
frames. From this voxel grid, we extract a mesh and apply

Laplacian smoothing. Figure 6 visualizes the annotation
process.

Note that this method only approximates the real
shape and is sensitive to misaligned bounding boxes and
missing depth data. Especially thin surfaces and details,
such as mug handles, are difficult to extract accurately due
to sensor noise. Additionally, alignment errors can easily
accumulate, resulting in too large or too small objects.
However, the annotations are accurate enough to evalu-
ate the performance of current methods on unconstrained
orientations.

To produce the final ground truth, we compute tight
bounding boxes based on the extracted meshes. For both
datasets we normalize the orientation convention to be
consistent with the ShapeNet [9] dataset. Figure 7 shows
examples of the final annotations. In Figure 5 we com-
pare the orientation distribution of REDWOOD75 and
REAL275. Note that the orientations in REDWOOD75
are significantly less constrained than in REAL275.

6. Experiments

We follow our proposed evaluation protocol and com-
pare the nine methods described in Section 4.3. All of
the methods estimate 6D pose and reconstruct the shape.
Most methods represent the shape as point sets; for iCaps
[22] and SDFEst [23] we convert the estimated signed dis-
tance field first into a mesh and then into a point set by
sampling 10000 points on the mesh surface.

For all methods, we closely followed the published in-
ference code and verified that our method interface pro-
duced results similar to their evaluation code. For most
methods we were able to achieve results on par with their
published results. However, CASS’ reconstructed point
sets were significantly worse except for the laptop cate-
gory and ASM-Net often predicted negative scales, which
caused some reconstructions to be upside down, while the
object frame o is predicted in the correct orientation.

We have implemented the metrics, and interfaces to the
datasets and methods described in the previous sections
using Open3D [80] and PyTorch [81]. We open-source our
code as a benchmarking toolbox, with the goal of simpli-
fying fair comparison with state-of-the-art methods. We
plan to extend the toolbox as new methods are released.

6.1. Qualitative Results

Figure 8 shows randomly selected results on the
REAL275 and REDWOOD75 datasets. For the REAL275
dataset, all methods perform pose estimation with a sim-
ilar quality as shown in the respective publications. On
REDWOOD75, on the other hand, only iCaps and SD-
FEst show generalization capability to arbitrary orienta-
tions. Only objects that are in a similar configuration as
those in the REAL275 dataset are estimated successfully
(see third row of Figure 8(b)) Most other methods predict
upright objects consistent with the orientation distribution
of REAL275 independent of the observed point sets.
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Figure 4: Bottom view of the original meshes of the REAL275 dataset (red) and our completed meshes (blue). Backfaces are not rendered
highlighting the missing surfaces in the original meshes.

(a) REAL275

(b) REDWOOD75

Figure 5: Distribution of the up-axis in REAL275 and REDWOOD75
datasets. REDWOOD75 covers a larger variety of orientations.

A notable failure case is SDFEst’s laptop prediction
shown in Figure 8(a). While the predicted shape aligns
well, the pose is incorrect, that is, the keyboard is aligned
with the screen and vice versa. This shows a downside of
unbiased depth-only approaches. Similar cases were ob-
served by Deng et al. [22] for the can category, for which
pure depth observations are not sufficient to determine
whether the can is upright or not without introducing a
bias into the estimation. In general, we observe more se-
vere outliers produced by the unbiased methods, iCaps and
SDFEst, on the REAL275 dataset.

ASM-Net’s reconstructions are often flipped, but sur-
faces typically align well. As noted above, CASS com-
pletely fails to reconstruct any object except laptops. Most
point set-based methods and, in particular, DPDN predict
a few outlier points (outside the estimated bounding box)
in their reconstruction.

6.2. Quantitative Results

We now present the results using the metrics intro-
duced in Section 5.1. Following Section 5.1.6, we re-

Figure 6: Manual annotations for Redwood dataset. The left column
shows the cropped, accumulated point sets (including symmetries)
extracted from annotated bounding boxes. The middle columns
shows the voxel grid after carving. The right column shows the
extracted mesh, overlaid with the point set.

port accuracy with varying thresholds on translation er-
ror, orientation error, and reconstruction F-score in Ta-
ble 3. To assess the joint estimate of pose and shape,
we use 5°, 1 cm, 0.8 and 10°, 2 cm, 0.6 for δ, d, and F1cm,
respectively. To assess pose estimation in isolation (i.e.,
F1cm =∞), we use 5°, 1 cm and 10°, 2 cm. We picked these
tuples of thresholds such that all thresholds in a tuple are
roughly equally strict. In the past, some methods used
pairs such as 10°, 5cm, or 10°, 10cm, where only the 10°
threshold practically mattered.

The results from Table 3 confirm the qualitative obser-
vations from before. DPDN performs best on REAL275,
and SDFEst performs best on REDWOOD75. In gen-
eral, the unbiased methods, SDFEst and iCaps, perform
better on REDWOOD75 confirming limited generaliza-
tion capability of methods trained on the CAMERA and
REAL datasets. However, improved generalization perfor-
mance comes with poorer performance on the REAL275
dataset, which opens the question, whether strong cross-
dataset methods are possible. DPDN shows the third best
performance on REDWOOD75, however, we note that
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Table 3: Accuracy at varying position, orientation and F-score thresholds. The bestO, second best O, and third best O are highlighted.

REAL275 REDWOOD75

δ, d→ 10°, 2 cm 5°, 1 cm 10°, 2 cm 5°, 1 cm

F1cm → ∞ 0.6 ∞ 0.8 ∞ 0.6 ∞ 0.8

CASS [5] 0.3319 0.0293 0.0723 0.0000 0.0133 0.0000 0.0000 0.0000

SPD [6] 0.5439 0.4818 0.2082 0.1741 0.1867 0.1600 0.0400 0.0267

CR-Net [14] 0.5993 0.4781 0.2397 0.1777 0.2533 0.2400 O 0.0800 0.0800

SGPA [15] 0.6939 O 0.6302 O 0.3142 O 0.2497 O 0.2267 0.2267 0.2000 O 0.1733 O

ASM-Net [36] 0.3255 0.2101 0.0678 0.0508 0.3067 0.1733 0.0667 0.0533

iCaps [22] 0.2976 0.2243 0.0565 0.0379 0.4133 O 0.3467 O 0.1200 O 0.0800

SDFEst [23] 0.5060 0.4710 0.2237 0.2008 O 0.6533O 0.6400O 0.4667O 0.4133O

DPDN [16] 0.7589O 0.6315O 0.3336O 0.2591O 0.3333 O 0.3200 O 0.0933 0.0933 O

RBP-Pose [55] 0.7397 O 0.5559 O 0.2847 O 0.1514 0.2133 0.0933 0.0667 0.0267

Table 4: Accuracy for different categories with δ = 10°, d = 2 cm, F1cm = 0.6. The bestO, second best O, and third best O are highlighted.

REAL275 REDWOOD75

Bottle Bowl Camera Can Laptop Mug Bottle Bowl Mug

CASS [5] 0.0018 0.0920 0.0000 0.0264 0.0000 0.0623 0.0000 0.0000 0.0000

SPD [6] 0.6268 O 0.8987 0.0543 0.8560O 0.2269 0.2825 0.3200 O 0.0800 0.0800

CR-Net [14] 0.5963 0.9131 0.0498 0.6021 0.3936 O 0.3656 0.2400 0.4000 O 0.0800

SGPA [15] 0.7570O 0.9481 O 0.0742 O 0.8534 O 0.4383O 0.7362 0.2000 0.4000 O 0.0800

ASM-Net [36] 0.1596 0.1114 0.0229 0.5808 0.1365 0.2328 0.1600 0.3600 0.0000

iCaps [22] 0.2136 0.5477 0.0214 0.2257 0.1187 0.2568 0.1600 0.7600 O 0.1200 O

SDFEst [23] 0.3935 0.8679 0.0011 0.4984 0.1946 0.8986O 0.7200O 0.8400O 0.3600O

DPDN [16] 0.7004 O 0.9582O 0.1562 O 0.8153 O 0.3137 O 0.8704 O 0.4000 O 0.4000 O 0.1600 O

RBP-Pose [55] 0.4559 0.9338 O 0.2023O 0.7340 0.2756 0.7707 O 0.0000 0.2000 0.0800

Figure 7: Examples of REDWOOD75 samples.

this mostly stems from objects with similar orientations
as REAL275. RBP-Pose while giving strong results for
pose estimation on REAL275, shows poor performance on
REDWOOD75 indicating a strong dataset-specific bias.
Furthermore, its reconstruction quality falls short of sim-
pler methods such as SGPA.

Note that for both datasets there is still a lot of room
for improvement. Typically, significantly less than 50%
of the estimates are of sufficient quality to be considered
correct in pose and shape for the stricter thresholds. This
shows that categorical pose and shape estimation is still an
open problem, especially for unconstrained orientations.

To gain further insight into the estimation quality of
the methods, we show detailed results for varying thresh-

olds in Figure 10. It can be seen that the difference be-
tween the two datasets is most pronounced for orientation-
based thresholding. This confirms the issue of constrained
orientations discussed in Section 5.2 (see Figure 5). Un-
biased methods (i.e., SDFEst and iCaps) that are trained
on unconstrained synthetically generated data perform sig-
nificantly better on REDWOOD75, however they level out
earlier on REAL275, partly due to the aforementioned am-
biguities, which other methods avoid through dataset spe-
cific biases. On REDWOOD75, ASM-Net which is trained
on synthetic data (with the exact distribution unknown)
performs comparatively well. Similarly DPDN, which is
trained with augmented point sets, shows some generaliza-
tion capability, however, less so than unbiased methods.

In Table 4 we further report the accuracy per category
for the more lenient thresholds δ = 10°, d = 2 cm, F1cm =
0.6. Note that CASS’ reconstructions are relatively sparse
and very noisy, and therefore rarely reach F1cm > 0.6 (see
also Figure 10). On REAL275, all methods fail at the
camera category which contains significantly more shape
variation than the other categories. RBP-Pose and DPDN
show some encouraging results here, but still perform sig-
nificantly worse compared to other categories. SDFEst
shows a drop in performance for geometrically ambiguous
categories, such as can and laptop, for which other meth-
ods perform comparatively better.

Run Time. Table 5 reports the run time results4. These
times include the transfer time from CPU to GPU and

4Intel Core i7-6850K, NVIDIA TITAN X (Pascal)
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Input GT CASS [5] SPD [6] CR-Net [14] SGPA [15] ASM [36] iCaps [22] SDFEst [23] DPDN [16] RBP [55]

(a) REAL275
Input GT CASS [5] SPD [6] CR-Net [14] SGPA [15] ASM [36] iCaps [22] SDFEst [23] DPDN [16] RBP [55]

(b) REDWOOD75

Figure 8: Randomly selected results on REAL275 and REDWOOD75 datasets. Results that are considered correct under δ = 10°, d =

2 cm, F1cm = 0.6 thresholds are highlighted . Input shows the full point set, with points outside the instance mask grayed out.
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Figure 9: Accuracy of the evaluated methods on the REAL275 and
REDWOOD75 dataset for δ = 10°, d = 2 cm, F1cm = 0.6. The color
of the circle indicates the mean run time of the method for one
inference.

Table 5: Run time of the evaluated methods per object estimation
on the REDWOOD75 dataset in seconds.

Mean Std Min Max

CASS [5] 0.0217 0.0247 0.0137 0.2294

SPD [6] 0.2079 0.1406 0.0976 0.9414

CR-Net [14] 0.2203 0.1454 0.1051 0.9266

SGPA [15] 0.2277 0.1432 0.1200 0.9211

ASM-Net [36] 0.0545 0.0234 0.0223 0.1436

iCaps [22] 2.5554 0.9255 2.0181 10.1082

SDFEst [23] 1.3458 0.0302 1.2588 1.4123

DPDN [16] 0.2581 0.1444 0.1338 0.8772

RBP-Pose [55] 0.1766 0.1487 0.0530 0.7680

mesh reconstruction for iCaps and SDFEst, but exclude
the computation of the metrics. Most notably, the two
methods including iterative optimization and mesh re-
construction (iCaps and SDFEst) exhibit the longest run
times. CASS achieves the fastest run times, however also
the worst results. Figure 9 further visualizes the mean run
time and performance of all methods on both datasets.

7. Limitations

7.1. Comparability

The results from Section 6 suggest that training on syn-
thetic data currently generalizes better to unconstrained
orientations. This is expected, since synthetic data gen-
eration provides perfectly annotated and unconstrained
training data. However, it introduces a synthetic-to-real
domain gap, which needs to be addressed. This opens the
question of how well methods such as DPDN and RBP-
Pose would perform when trained on unconstrained syn-
thetic images. In general, since methods currently vary
significant parts of training datasets, architecture, pose
parameterization, and losses, it is difficult to assess the
contributions of individual changes.

7.2. Multimodal Distributions

Unconstrained pose estimation introduces significant
difficulties in the task, which were hidden due to the con-
straints present in the CAMERA and REAL datasets.
Consider, for example, the bottom left mug in Figure 7.
From the given view, it is difficult to tell which way the
opening of the mug faces. Another example are cans,
which are geometry-wise nearly symmetric. Currently
there are only few works [82, 69] that consider this prob-
lem of ambiguous poses. Evaluation of such methods that
predict multimodal posteriors is difficult. One possible
way of extending the presented framework to such meth-
ods would be to allow methods to generate N hypotheses.
Two accuracy values ACCbest and ACCworst could be com-
puted based on the best and worst hypothesis, respectively.
A strong method would generate the same hypothesis N
times if there is no ambiguity, leading to a higher ACCbest

and ACCworst. Similarly, if there is ambiguity, the correct
hypothesis would still be contained in the set of hypotheses
leading to a higher ACCbest.

7.3. Dataset Size

The REDWOOD75 dataset is limited in size, but the
results suggest a clear lack of generalization capability
of current approaches. This shows the need for larger
datasets for unconstrained pose and shape estimation. It
is an open question how such a dataset could be collected
in the most efficient way.

8. Conclusion and Outlook

In this work, we have discussed the current state of cat-
egorical pose and shape estimation and identified several
limitations of the current evaluation protocol. In particu-
lar, existing evaluation datasets contain only a heavily con-
strained set of orientations, which simplifies the problem
by removing pose and shape ambiguities. Furthermore,
existing evaluation metrics are suboptimal and unneces-
sarily difficult to interpret. To alleviate these problems,
we propose a new set of metrics and new annotations for
the REDWOOD dataset, which contains less constrained
orientations. We apply our evaluation protocol to nine
state-of-the-art methods and confirm limited generaliza-
tion capability as suggested by the constrained orienta-
tions in their training data.

Our experiments suggest that there is a need for larger,
high-quality datasets for unconstrained pose and shape es-
timation as well as for robust methods that can handle
unconstrained orientations and the resulting pose ambigu-
ities in a principled way.
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